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Elliptic Curves

An elliptic curve E over a field K is a set of points (x , y) with
x , y ∈ K , together with a special point O called the point at
infinity. The (x , y) points are the roots of a Weierstrauss equation
of the form:

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6,

where the polynomial on the right hand side has no double roots.

For particular fields K , the Weierstrauss equation takes a simpler
form, as we shall see.
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EC over Real Numbers

Definition (6.3 of Stinson)

Let a, b ∈ R be constants such that 4a3 + 27b2 6= 0.
A non-singular elliptic curve is the set E of solutions
(x , y) ∈ R× R to the equation

y2 = x3 + ax + b

together with a special point O called the point at infinity.

The point at infinity is sometimes denoted by ∞.
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EC over Real Numbers

The condition 4a3 + 27b2 6= 0 is necessary and sufficient to ensure
that the elliptic curve equation has three distinct roots.

If 4a3 + 27b2 = 0, then corresponding elliptic curve is called a
singular elliptic curve.

Singular elliptic curves are not safe for cryptographic uses. See
16.3.1 of Trappe & Washington for details.
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Example

Each choice of the numbers yields a different elliptic curve.

Image retrieved from http://en.wikipedia.org/wiki/Elliptic_curve
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EC Operations

Exactly one of these conditions holds for any pair of points on an
elliptic curve.

Image retrieved from http://en.wikipedia.org/wiki/Elliptic_curve
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EC Modulo a Prime

Elliptic curves over Zp are defined exactly as they are over real
numbers.

Definition (6.4 of Stinson)

Let p > 3 be a prime. The elliptic curve y2 = x3 + ax + b over Zp

is the set of solutions (x , y) ∈ Zp × Zp to the congruence

y2 ≡ x3 + ax + b mod p

where a, b ∈ Zp are constants such that 4a3 + 27b2 6= 0, together
with a special point O called the point at infinity.
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Example

E : y2 = x3 − x over a finite field F61

Image retrieved from http://en.wikipedia.org/wiki/Elliptic_curve
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Example

A 3D graph of an elliptic curve E : y2 = x3 + 673x over F677.

http://www.youtube.com/watch?v=QFLQWhvdIYU
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Example

Elliptic curves mod p are finite sets of points. These are the elliptic
curves we are interested in.
E : y2 ≡ x3 + 4x + 4 mod 5 creates the following group:

(0, 2), (0, 3), (1, 2), (1, 3), (2, 0)(4, 2), (4, 3),O

To find the points, substitute each possible value of
x = {0, 1, 2, 3, 4} into the equation and find the values of y that
solve the equation.

For example,
x ≡ 0⇒ y2 ≡ 4⇒ y ≡ 2, 3 mod 5
which gives us two points (0, 2) and (0, 3).
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Number of Points on a Curve

Theorem (Hasse’s Theorem)

Suppose E mod p has N points. Then

|N − (p + 1)| ≤ 2
√

p.

Hasse’s theorem bounds the number of points on an elliptic curve
over a finite field.

#E (Fp) lies in the interval [p + 1−√p, p + 1 +
√

p].
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Adding Points

All arithmetic operations are performed in Zp.

Unfortunately, the addition of points on an elliptic curve over Zp

does not have the nice geometric interpretation that it does on an
elliptic curve over R.
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Adding Points

Let P = (xP , yP), Q = (xQ , yQ) and R = (xR , yR) be points on E .

1. Add the point at infinity to itself.
O +O = O

2. Add the point at infinity to any other point.
P +O = O + P = P

3. Add two points with the same x-coordinates and different (or
equal to 0) y -coordinates: xQ = xP and yQ = −yP .
P + Q = O
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Adding Points

4. Add two points with different x-coordinates.
P + Q = R
xR = λ2 − xP − xQ , yR = λ(xP − xR)− yP
λ = (yQ − yP)(xQ − xP)−1

5. Add a point to itself (point doubling).
P + P = R
xR = λ2 − 2xP , yR = λ(xP − xR)− yP
λ = (3x2

P + a)(2yP)−1
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Why adding points works? (6.5.1 of Stinson)

The algebraic formula follows the geometric addition. Here is how
it works.

To add two points, P and Q, we define L to be the line through P
and Q. The line L will intersect E in one further point R ′. If we
reflect R ′ in the x-axis, then we get a point which we name R.

The equation of L is is y = λx + ν, where the slope of L is

λ =
yQ − yP
xQ − xP

and
ν = yP − λxP = yQ − λxQ
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Why adding points works?

In order to find the points E ∩ L, we substitute y = λx + ν into
the equation E , obtaining the following:

(λx + ν)2 = x3 + ax + b

which is the same as

x3 − λ2x2 + (a− 2λν)x + b − ν2 = 0

E ∩ L consists of three points, two of which we already know: P
and Q. The roots of the above equation are the x-coordinates of
the points in E ∩ L, hence, xP and xQ are the two roots.
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Why adding points works?

Since the equation is cubic, there are three roots. The sum of
three roots must be the negative of the coefficient of the quadratic
term, or λ2. Therefore:

xR′ = λ2 − xP − xR

where xR′ is the x-coordinate of the point R ′. We will denote the
y -coordinate of R ′ by −yR , so the y -coordinate of R will be yR .

An easy way to compute yR is to use the fact that the slope of L,
namely λ is determined by any two points on L.
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Why adding points works?

If we use the points (xP , yP) and (xR ,−yR) to compute this slope,
we get:

λ =
−yR − yP
xR − xP

or
yR = λ(xP − xR)− yP

Note, that xR′ = xR . Therefore, we derived a formula for
P + Q = R if P 6= Q. A formula for P + Q = R if Q = P can be
derived in a similar fashion.
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EC Groups

As noted before, elliptic curves mod p are finite sets of points.

The set of points on E forms a group given the + operator. The
group operator is defined using the addition law.

The group is abelian since P + Q = Q + P.

E (Fp) denotes an elliptic curve group over Fp.
#E (Fp) denotes the order (cardinality) of Fp.
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Why points over an EC form a group?

Definition
A group (G , ◦) is a set G with a binary operation ◦ : G × G → G
such that the following four axioms are satisfied:

Associativity: For all a, b, c ∈ G the equation
(a ◦ b) ◦ c = a ◦ (b ◦ c) holds.

Identity element: There is an element e ∈ G s.t. for all a ∈ G the
equation e ◦ a = a ◦ e = a holds.

Inverse element: For each a ∈ G there exists an element b ∈ G s.t.
a ◦ b = b ◦ a = e.
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Why points over an EC form a group?

Associativity: Points can be added in any order.

Identity element: O is an identity with respect to addition.

Inverse element: Every point on E has an inverse with respect to
addition: P + (−P) = O where P = (xP , yp) and −P = (xP ,−yP).

Therefore, (E ,+) is a group.

Additionally, the group operator + is commutative since
P + Q = Q + P. Hence, (E ,+) in an abelian group.
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EC in Characteristic 2

Elliptic curves can also be defined over finite fields GF (2n).

See 16.4 of Trappe & Washington for details.
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Other Operations

For many of the crypto schemes we need to perform multiplication.
In our case we have the + operator to work with.

Let k be an integer and P a point on E . k × P (or kP)1 is defined
as adding P to itself k times.

Once we calculate k × P, it is extremely difficult to recover k from
k × P. The only way to recover k from k × P is to try every
possible repeated addition of P.

1Note that we do not define a multiplication operator over E .
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Elliptic Curve Discrete Logarithm Problem

Let P be a point on E . Compute Q = k × P. Then, ECDLP:
given P and Q compute k .

This allows us to translate crypto schemes based on DLP to
EC-based schemes.
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Elliptic Curve Cryptography
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Elliptic Curve Cryptography

Originally independently proposed by Neal Koblitz (University of
Washington) and Victor Miller (IBM) in 1985.

ECC was proposed as an alternative to other public key encryption
algorithms, for example RSA.

All ECC schemes are public key and are based on ECDLP.
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EC Cryptosystems

There are many EC cryptosystems used in practice. We will have a
look at three elliptic curve versions of classical crypto systems:

1. Diffie-Hellman Key Exchange

2. ElGamal

3. DSA
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Why ECC?

The computational overhead of RSA increases with the key
lengths. Faster computers and better factorization algorithms force
us to use longer keys.

In case of EC, we are able to use smaller primes, or smaller finite
fields, and achieve a level of security comparable to that for much
larger integers mod p.

This allows for much efficient crypto systems!
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Comparison of Key Lengths

Image retrieved from http://www.nsa.gov/business/programs/elliptic_curve.shtml
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Where EC Cryptosystems are used?

EC Cryptosystems can be used wherever classic crypto systems are
used.

The main advantage of ECC are lower computational
requirements. For this reason, ECC algorithms can be easily
implemented on smart cards, pagers, or mobile devices. Some
smart cards can only work with ECC.

ECC are also well suited for applications that need long term
security requirements at a reasonable computational cost.
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Changing a Classical Cryptosystem into EC System

There is a general procedure for changing a classical system based
on discrete logarithms into one using elliptic curves:

1. Change modular multiplication to addition of points on an
elliptic curve.

2. Change modular exponentiation to “multiplying” a point on
an elliptic curve by an integer.
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Representing Plaintext

In most crypto systems, we need a way of mapping our message
into a numerical value upon which we can perform mathematical
operations.

To use EC cryptosystems, we need to map a message into a point
on an elliptic curve.

Recall, that we can use a point on the curve and produce another
point on the curve. EC crypto systems use the plaintext point on
E to yield a new point on E that will serve as a ciphertext.
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Encoding Plaintext

The problem of encoding plaintext is quite difficult since there is
no known polynomial time deterministic algorithm for writing down
points on an arbitrary elliptic curve E mod p.

However, there are fast probabilistic methods for finding points and
these can be used for encoding messages.

These methods have the property that with small probability they
will fail to produce a point, however, by appropriately choosing
parameters, this probability can be made arbitrarily small.

Example: Koblitz’s Method (see 16.2.3 of Trappe & Washington)

CPSC 467, Lecture 11 35/52



Outline Elliptic Curves Basics Elliptic Curve Cryptography

Koblitz’s Method

Main idea: embed a message m represented as a number into the
x-coordinate of a point on E .

Because the probability that m3 + am + b is a square mod p is 1
2 ,

we add a few bits at the end of m and adjust them until we get a
square.

The probability that we will fail to find a square (and hence fail to
associate m with a point) is about 1

2k
.
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Koblitz’s Method

Encoding

1. Choose an auxiliary base parameter k and verify that m
satisfies (m + 1)k < n.

2. The message m is represented by x = mk + j , where 0 ≤ j ≤ k

3. For j = 0, 1, 2, . . . , k − 1, compute x3 + ax + b and solve for y .

4. If there is a square root y , then Pm = (x , y), otherwise,
increment j and try again.

Decoding

1. Compute m′ = x
k and set m to be the greatest integer ≤ m′.
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Koblitz’s Method Example
Encode

1. Assume that the curve parameters are p = 179, a = 2, b = 7,
k = 10.

2. The message to encode is m = 5.

3. First, check x = mk + 0. If you can’t solve for y , check
x = mk + 1, x = mk + 2, and so on.
x = 5 ∗ 10 = 50, no y exists
x = 5 ∗ 10 + 1 = 51, y = 513 + 2 ∗ 51 + 7 = 121 = 11 mod
179.

4. Create Pm = (51, 11).

Decode

1. Compute x
k = 51

10 = 5.1.

2. Return 5 as the original plaintext.
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EC Domain Parameters

EC Domain Parameters yield a set of information for
communication parties to identify a certain elliptic curve group.

The domain parameters comprise:

I finite field Fp

I coefficients a and b of the Weierstrass equation

I base point G ∈ E (Fp)

I order of G

I cofactor h =
#E(Fp)

n , where n is the order of G
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EC Diffie-Hellman

Alice and Bob want to exchange a key. In order to do so, they
agree on an elliptic curve E and a public base point G on E .

1. Alice and Bob choose random integers kA and kB respectively.

2. Alice computes A = kA × G and sends to Bob.

3. Bob computes B = kB × G and sends to Alice.

4. Alice and Bob compute A× B.
(kA × kB)× G = kA × (kB × G ) = kB × (kA × G )
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EC Diffie-Hellman Example

Alice and Bob agree on p = 7211, a = 1, G = (3, 5), b = 7206.

1. Alice randomly chooses kA = 12, Bob chooses kB = 23.

2. Alice computes A = kA × G = 12× (3, 5) = (1794, 6375) and
sends to Bob.

3. Bob computes B = kB × G = 23× (3, 5) = (3861, 1242) and
sends to Alice.

4. Alice and Bob compute A× B.

I Alice takes B and multiplies by kA to get the key:
kA × B = kA(kB × G ) = 12(3861, 1242) = (1472, 2098)

I Bob takes A and multiplies by kB to get the key:
kB × A = kB(kA × G ) = 23(1794, 6375) = (1472, 2098)
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ElGamal

Recall non-EC version:

1. Alice wants to send a message m s.t. 0 ≤ m < p to Bob.

2. Bob chooses a large prime p and a primitive root α. He also
chooses a secret integer a and computes β ≡ αa mod p.

3. Bob makes (p, α, β) his public key and keeps a secret.

4. Alice chooses a random k and computes y1 and y2, where
y1 ≡ αk and y2 ≡ βkm mod p.

5. She sends (y1, y2) to Bob, who then decrypts by calculating
m ≡ y2y−a1 mod p.
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EC ElGamal

1. Alice wants to send a message m to Bob.

2. Bob chooses an elliptic curve E mod p. He chooses a point α
on E and a secret integer a. He computes β = a× α.

3. The points α and β are made public, while a is kept secret.

4. Alice expresses her message as a point M on E . She chooses
a random k, computes Y1 = k × α and Y2 = M + k × β, and
sends the pair (Y1,Y2) to Bob.

5. Bob decrypts by calculating M = Y2 − a× Y1.
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EC ElGamal Example

Let’s use a prime p = 8831, the point G = (4, 11), and a = 3. To
make G lie on a EC, we take b = 45.
Our E : y2 = x3 + 3x + 45

Alice has a message represented as a point Pm = (5, 1743) that
she wishes to send to Bob.
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EC ElGamal Example

Bob chooses a random number aB = 3 and publishes the point
aB × G = (413, 1808).

Alice obtains this and chooses a random number k = 8.

She sends Bob k × G = (5415, 6321) and
Pm + k(aB × G ) = (6626, 3576).

He first calculates aB(k × G ) = 3(5415, 6321) = (673, 146).

He now subtracts this from (6626, 3576):
(6626, 3576)−(673, 146) = (6626, 3576)+(673,−146) = (5, 1743).
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Difficulties with EC ElGamal

There are some practical difficulties in implementing an EC
ElGamal crypto system.

When implemented in Zp, ElGamal has a message expansion factor
of two. An EC implementation has a message expansion factor of
about four. This happen because there are approximately p
plaintexts, but each ciphertext consists of four elements.

However, a more serious problem is that the plaintext space
consists of the points on the curve E, and there is no convenient
method known of deterministically generating points on E .
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EC DSA

Alice wants to sign a message m which satisfies 0 ≤ m ≤ n. She
needs to choose a prime p and an elliptic curve E .

Alice computes the number of points n on E and chooses a point
A on E .

Alice chooses her secret integer a s.t. 1 < a ≤ n − 1 and computes
B = a× A.

The public information is (p,E , n,A,B).
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EC DSA: Signing

Alice does the following to sign a message m:

1. Chooses a random integer k with 1 ≤ k < n and computes
R = k × A = (x , y).

2. Computes s ≡ k−1(m − ax) mod n.

3. Sends the signed message (m,R, s) to Bob.

CPSC 467, Lecture 11 48/52



Outline Elliptic Curves Basics Elliptic Curve Cryptography

EC DSA: Verification

Bob verifies the signature as follows:

1. Computes V1 = x × B + s × R and V2 = m × A.

2. Declares the signature valid iff V1 = V2.

The verification works because

V1 = x × B + s × R

= xa× A + k−1(m − ax)(k × A)

= xa× A + (m − ax)× A

= m × A

= V2
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Choosing Elliptic Curves

A list of elliptic curves recommended by NIST for cryptographic
uses is specified in FIPS PUB 186-3 (Appendix D).

http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
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NIST Suggested Curve P-192

Prime modulus p
6277101735386680763835789423207666416083908700390324961279
Order n
6277101735386680763835789423176059013767194773182842284081
Coefficient a
64210519 e59c80e7 0fa7e9ab 72243049 feb8deec c146b9b1
Coefficient b
3099d2bb bfcb2538 542dcd5f b078b6ef 5f3d6fe2 c745de65
The base point x coordinate Gx

188da80e b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012
The base point y coordinate Gy

07192b95 ffc8da78 631011ed 6b24cdd5 73f977a1 1e794811
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Additional Resources

ECC Tutorial, Certicom
http://www.certicom.com/index.php/ecc-tutorial

Geometric Elliptic Curve Model, Certicom
http://www.certicom.com/ecc_tutorial/ecc_javaCurve.html

Finite Geometric Elliptic Curve Model, Certicom
http://www.certicom.com/ecc_tutorial/ecc_twopoints.html

Douglas Stinson, Cryptography: Theory and Practice, Second
Edition, 2002
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