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Modular multiplication

Multiplication modulo n

Theorem
Z∗
n is closed under multiplication modulo n.

This says, if a and b are both in Z∗
n, then (ab mod n) is also in Z∗

n.

Proof.
If neither a nor b share a prime factor with n, then neither does
their product ab.
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Modular multiplication

Example: Multiplication in Z∗26

Let n = 26 = 2 · 13. Then

Z∗
26 = {1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}

φ(26) = |Z∗
26| = 12.

Multiplication examples:

5× 7 mod 26 = 35 mod 26 = 9.

3× 25 mod 26 = 75 mod 26 = 23.

9× 3 mod 26 = 27 mod 26 = 1.

We say that 3 is the multiplicative inverse of 9 in Z∗
26.
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Modular inverses

Example: Inverses of the elements in Z∗26.

x 1 3 5 7 9 11 15 17 19 21 23 25

x−1 1 9 21 15 3 19 7 23 11 5 17 25

≡n 1 9 −5 −11 3 −7 7 −3 11 5 −9 −1

Bottom row gives equivalent integers in range [−12, . . . , 13].

Note that (26− x)−1 = −x−1.

Hence, last row reads same back to front except for change of sign.

Once the inverses for the first six numbers are known, the rest of
the table is easily filled in.
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Modular inverses

Finding modular inverses

Let u ∈ Z∗
n. We wish to find u−1 modulo n.

By definition, u−1 is the element v ∈ Z∗
n (if it exists) such that

uv ≡ 1 (mod n).

This equation holds iff n |(uv − 1) iff uv − 1 = qn for some
integer q (positive or negative).

We can rewrite this equation as

uv − nq = 1. (1)

u and n are given and v and q are unknowns. If we succeed in
finding a solution over the integers, then v is the desired
inverse u−1.
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Modular inverses

Diophantine equations

A Diophantine equation is a linear equation in two unknowns over
the integers.

ax + by = c (2)

Here, a, b, c are given integers. A solution consists of integer
values for the unknowns x and y that make (2) true.

We see that equation 1 fits the general form for a Diophantine
equation, where

a = u
b = −n
c = 1

(3)
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Modular inverses

Existence of solution

Theorem
The Diophantine equation

ax + by = c

has a solution over Z (the integers) iff gcd(a, b) |c.

It can be solved by a process akin to the Euclidean algorithm,
which we call the Extended Euclidean algorithm.
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Extended Euclidean algorithm

Extended Euclidean algorithm

The algorithm generates a sequence of triples of numbers
Ti = (ri , ui , vi ), each satisfying the invariant

ri = aui + bvi ≥ 0. (4)

T1 =

{
(a, 1, 0) if a ≥ 0
(−a,−1, 0) if a < 0

T2 =

{
(b, 0, 1) if b ≥ 0
(−b, 0,−1) if b < 0
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Extended Euclidean algorithm

Extended Euclidean algorithm (cont.)

ri = aui + bvi ≥ 0. (4)

Ti+2 is obtained by subtracting a multiple of Ti+1 from from Ti so
that ri+2 < ri+1. This is similar to the way the Euclidean algorithm
obtains (a mod b) from a and b.

In detail, let qi+1 = bri/ri+1c. Then Ti+2 = Ti − qi+1Ti+1, so

ri+2 = ri − qi+1ri+1 = ri mod ri+1

ui+2 = ui − qi+1ui+1

vi+2 = vi − qi+1vi+1

The sequence of generated pairs (r1, r2), (r2, r3), (r3, r4), . . . is
exactly the same as the sequence generated by the Euclidean
algorithm. We stop when rt = 0. Then rt−1 = gcd(a, b).
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Extended Euclidean algorithm

Extended Euclidean algorithm (cont.)

ri = aui + bvi ≥ 0. (4)

From (4) it follows that

gcd(a, b) = aut−1 + bvt−1 (5)
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Extended Euclidean algorithm

Finding all solutions

Returning to the original equation,

ax + by = c (2)

if c = gcd(a, b), then x = ut−1 and y = vt−1 is a solution.

If c = k · gcd(a, b) is a multiple of gcd(a, b), then x = kut−1 and
y = kvt−1 is a solution.

Otherwise, gcd(a, b) does not divide c, and one can show that (2)
has no solution.
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Extended Euclidean algorithm

Example of extended Euclidean algorithm

Suppose one wants to solve the equation

31x − 45y = 3 (6)

Here, a = 31 and b = −45. We begin with the triples

T1 = (31, 1, 0)

T2 = (45, 0,−1)
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Extended Euclidean algorithm

Computing the triples

The computation is shown in the following table:

i ri ui vi qi

1 31 1 0
2 45 0 −1 0
3 31 1 0 1
4 14 −1 −1 2
5 3 3 2 4
6 2 −13 −9 1
7 1 16 11 2
8 0 −45 −31
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Extended Euclidean algorithm

Extracting the solution

From T7 = (1, 16, 11), we obtain the solution x = 16 and y = 11
to the equation

1 = 31x − 45y

We can check this by substituting for x and y :

31 · 16 + (−45) · 11 = 496− 495 = 1.

The solution to
31x − 45y = 3 (6)

is then x = 3 · 16 = 48 and y = 3 · 11 = 33.
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Generating RSA Encryption and Decryption

Exponents
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Recall RSA exponent requirement

Recall that the RSA encryption and decryption exponents must be
chosen so that

ed ≡ 1 (mod φ(n)), (7)

that is, d is e−1 in Z∗
φ(n).

How does Alice choose e and d to satisfy (7)?

I Choose a random integer e ∈ Z∗
φ(n).

I Solve (7) for d .

We know now how to solve (7), but how does Alice sample at
random from Z∗

φ(n)?
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Sampling from Z∗n

If Z∗
φ(n) is large enough, Alice can just choose random elements

from Zφ(n) until she encounters one that also lies in Z∗
φ(n).

A candidate element e lies in Z∗
φ(n) iff gcd(e, φ(n)) = 1, which can

be computed efficiently using the Euclidean algorithm.1

1φ(n) itself is easily computed for an RSA modulus n = pq since
φ(n) = (p − 1)(q − 1) and Alice knows p and q.
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How large is large enough?

If φ(φ(n)) (the size of Z∗
φ(n)) is much smaller than φ(n) (the size

of Zφ(n)), Alice might have to search for a long time before finding
a suitable candidate for e.

In general, Z∗
m can be considerably smaller than m.

Example:

m = |Zm| = 2 · 3 · 5 · 7 = 210
φ(m) = |Z∗

m| = 1 · 2 · 4 · 6 = 48.

In this case, the probability that a randomly-chosen element of Zm

falls in Z∗
m is only 48/210 = 8/35 = 0.228 . . . .
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A lower bound on φ(m)/m

The following theorem provides a crude lower bound on how small
Z∗
m can be relative to the size of Zm.

Theorem
For all m ≥ 2,

|Z∗
m|
|Zm|

≥ 1

1 + blog2 mc
.
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A lower bound on φ(m)/m

Proof.
Write m =

∏t
i=1 pei

i , where pi is the i th prime that divides m and

ei ≥ 1. Then φ(m) =
∏t

i=1(pi − 1)pei−1
i , so

|Z∗
m|
|Zm|

=
φ(m)

m
=

∏t
i=1(pi − 1)pei−1

i∏t
i=1 pei

i

=
t∏

i=1

(
pi − 1

pi

)
. (8)
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A lower bound on φ(m)/m

Proof (cont.)

To estimate the size of
∏t

i=1(pi − 1)/pi , note that(
pi − 1

pi

)
≥
(

i

i + 1

)
.

This follows since (x − 1)/x is monotonic increasing in x , and
pi ≥ i + 1. Then

t∏
i=1

(
pi − 1

pi

)
≥

t∏
i=1

(
i

i + 1

)
=

1

2
· 2

3
· 3

4
· · · t

t + 1
=

1

t + 1
. (9)
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A lower bound on φ(m)/m

Proof (cont.)

Clearly t ≤ blog2 mc since 2t ≤
∏t

i=1 pi ≤ m and t is an integer.

Combining this with equations (8) and (9) gives the desired result.

|Z∗
m|
|Zm|

≥ 1

t + 1
≥ 1

1 + blog2 mc
. (10)
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Expected difficulty of choosing RSA exponent e

For n a 1024-bit integer, φ(n) < n < 21024.

Hence, log2(φ(n)) < 1024, so blog2(φ(n))c ≤ 1023.

By the theorem, the fraction of elements in Zφ(n) that also lie in
Z∗
φ(n) is at least

1

1 + blog2 φ(n)c
≥ 1

1024
.

Therefore, the expected number of random trials before Alice finds
a number in Z∗

φ(n) is provably at most 1024 and is likely much
smaller.
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Euler’s Theorem
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Repeated multiplication in Z∗n

If any element x ∈ Z∗
n is repeatedly multiplied by itself, the result

is eventually 1. 2

Example, for x = 5 ∈ Z∗
26: 5, 25, 21, 1, 5, 25, 21, 1, . . .

Let xk denote the result of multiplying x by itself k times.
The order of x , written ord(x), is the smallest integer k ≥ 1 for
which xk = 1.

Theorem
ord(x) |φ(n). (Recall, φ(n) is the size of Z∗

n).

2The first repeated element must be x . If not, then some y 6= x is the first
to repeat. The element immediately preceding each occurrence of y is yx−1.
But then yx−1 is the first to repeat, a contradiction. Hence, x = xk+1 for some
k ≥ 1, so xk = xk+1x−1 = xx−1 = 1.
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Euler’s and Fermat’s theorem

Theorem (Euler’s theorem)

xφ(n) ≡ 1 (mod n) for all x ∈ Z∗
n.

Proof.
Since ord(x) |φ(n), we have

xφ(n) ≡ (xord(x))φ(n)/ord(x) ≡ 1φ(n)/ord(x) ≡ 1 (mod n).

As a special case, we have

Theorem (Fermat’s theorem)

x (p−1) ≡ 1 (mod p) for all x, 1 ≤ x ≤ p − 1, where p is prime.
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An important corollary

Corollary

Let r ≡ s (mod φ(n)). Then ar ≡ as (mod n) for all a ∈ Z∗
n.

Proof.
If r ≡ s (mod φ(n)), then r = s + uφ(n) for some integer u. Then
using Euler’s theorem, we have

ar = as+uφ(n) = as · (au)φ(n) ≡ as · 1 ≡ as (mod n),

as desired.
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Application to RSA

Recall the RSA encryption and decryption functions

Ee(m) = me mod n

Dd(c) = cd mod n

where n = pq is the product of two distinct large primes p and q.

This corollary gives a sufficient condition on e and d to ensure that
the resulting cryptosystem works. That is, we require that

ed ≡ 1 (mod φ(n)).

Then Dd(Ee(m)) ≡ med ≡ m1 ≡ m (mod n) for all messages
m ∈ Z∗

n.
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Messages not in Z∗n

What about the case of messages m ∈ Zn − Z∗
n?

There are several answers to this question.

1. Alice doesn’t really want to send such messages if she can
avoid it.

2. If Alice sends random messages, her probability of choosing a
message not in Z∗

n is very small — only about 2/
√

n.

3. RSA does in fact work for all m ∈ Zn, even though Euler’s
theorem fails for m 6∈ Z∗

n.
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Why Alice might want to avoid sending messages not in Z∗n

If m ∈ Zn − Z∗
n, either p |m or q |m (but not both because

m < pq).

If Alice ever sends such a message and Eve is astute enough to
compute gcd(m, n) (which she can easily do), then Eve will
succeed in breaking the cryptosystem.

Why?
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Why a random message is likely to be in Z∗n

The number of messages in Zn − Z∗
n is only

n − φ(n) = pq − (p − 1)(q − 1) = p + q − 1

out of a total of n = pq messages altogether.

If p and q are both 512 bits long, then the probability of choosing
a bad message is only about 2 · 2512/21024 = 1/2511.

Such a low-probability event will likely never occur during the
lifetime of the universe.

CPSC 467, Lecture 12 33/50



Outline Computing in Zn RSA exponents Euler RSA modulus Primitive Roots

RSA works anyway

For m ∈ Zn − Z∗
n, RSA works anyway, but for different reasons.

For example, if m = 0, it is clear that (0e)d ≡ 0 (mod n), yet
Euler’s theorem fails since 0φ(n) 6≡ 1 (mod n).

We omit the proof of this curiosity.
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Generating RSA Modulus
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Random primes

Recall RSA modulus

Recall the RSA modulus, n = pq. The numbers p and q should be
random distinct primes of about the same length.

The method for finding p and q is similar to the
“guess-and-check” method used to find random numbers in Z∗

m.

Namely, keep generating random numbers p of the right length
until a prime is found. Then keep generating random numbers q of
the right length until a prime different from p is found.
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Random primes

Generating random primes of a given length

To generate a k-bit prime:

I Generate k − 1 random bits.

I Put a “1” at the front.

I Regard the result as binary number, and test if it is prime.

We defer the question of how to test if the number is prime and
look now at the expected number of trials before this procedure
will terminate.
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Density of primes

Expected number of trials to find a prime

The above procedure samples uniformly from the set
Bk = Z2k − Z2k−1 of binary numbers of length exactly k .

Let pk be the fraction of elements in Bk that are prime. Then the
expected number of trials to find a prime is 1/pk .

While pk is difficult to determine exactly, the celebrated Prime
Number Theorem allows us to get a good estimate on that
number.
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Density of primes

Prime number function

Let π(n) be the number of numbers ≤ n that are prime.

For example, π(10) = 4 since there are four primes ≤ 10, namely,
2, 3, 5, 7.
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Density of primes

Prime number theorem

Theorem
π(n) ≈ n/(ln n), where ln n is the natural logarithm loge n.

Notes:

I We ignore the critical issue of how good an approximation this
is. The interested reader is referred to a good mathematical
text on number theory.

I Here e = 2.71828 . . . is the base of the natural logarithm, not
to be confused with the RSA encryption exponent, which, by
an unfortunate choice of notation, we also denote by e.
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Density of primes

Likelihood of randomly finding a prime

The chance that a randomly picked number in Zn is prime is

π(n − 1)

n
≈ n − 1

n · ln(n − 1)
≈ 1

ln n
.

Since Bk = Z2k − Z2k−1 , we have

pk =
π(2k − 1)− π(2k−1 − 1)

2k−1

=
2π(2k − 1)

2k
− π(2k−1 − 1)

2k−1

≈ 2

ln 2k
− 1

ln 2k−1
≈ 1

ln 2k
=

1

k ln 2
.

Hence, the expected number of trials before success is ≈ k ln 2.
For k = 512, this works out to 512× 0.693 . . . ≈ 355.
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Primitive Roots

CPSC 467, Lecture 12 42/50



Outline Computing in Zn RSA exponents Euler RSA modulus Primitive Roots

Using the ElGamal cryptosystem

To use the ElGamal cryptosystem, we must be able to generate
random pairs (p, g), where p is a large prime, and g is a primitive
root of p.

We now look at primitive roots and how to find them.
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Primitive root

We say g is a primitive root of n if g generates all of Z∗
n, that is,

Z∗
n = {g , g2, g3, . . . , gφ(n)}.

By definition, this holds if and only if ord(g) = φ(n).

Not every integer n has primitive roots.

By Gauss’s theorem, the numbers having primitive roots are
1, 2, 4, pk , 2pk , where p is an odd prime and k ≥ 1.

In particular, every prime has primitive roots.
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Number of primitive roots
The number of primitive roots of p is φ(φ(p)).

This is because if g is a primitive root of p and x ∈ Z∗
φ(p), then g x

is also a primitive root of p. Why?

We need to argue that every element h in Z∗
p can be expressed as

h = (g x)y for some y .

I Since g is a primitive root, we know that h ≡ g ` (mod p) for
some `.

I We wish to find y such that g xy ≡ g ` (mod p).

I By Euler’s theorem, this is possible if the congruence equation
xy ≡ ` (mod φ(p)) has a solution y .

I We know that a solution exists iff gcd(x , φ(p)) |`.
I But this is the case since x ∈ Z∗

φ(p), so gcd(x , φ(p)) = 1.
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Primitive root example

Let p = 19, so φ(p) = 18 and φ(φ(p)) = φ(2) · φ(9) = 6.

Let g = 2. The subgroup S of Zp generated by g is given by the
table:

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

gk 2 4 8 16 13 7 14 9 18 17 15 11 3 6 12 5 10 1

Since S = Z∗
p, we know that g is a primitive root.

Now let’s look at Z∗
φ(p) = Z∗

18 = {1, 5, 7, 11, 13, 17}.

The complete set of primitive roots of p (in Zp) is then

{2, 25, 27, 211, 213, 217} = {2, 13, 14, 15, 3, 10}.
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Lucas test

Theorem (Lucas test)

g is a primitive root of p if and only if

g (p−1)/q 6≡ 1 (mod p)

for all 1 < q < p − 1 such that q |(p − 1).

Clearly, if the test fails for some q, then

ord(g) ≤ (p − 1)/q < p − 1 = φ(p), Why?

so g is not a primitive root of p.

Conversely, if ord(g) < φ(p), then the test will fail for
q = (p − 1)/ord(g).
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Problems with the Lucas test

A drawback to the Lucas test is that one must try all the divisors
of p − 1, and there can be many.

Moreover, to find the divisors efficiently implies the ability to
factor. Thus, it does not lead to an efficient algorithm for finding a
primitive root of an arbitrary prime p.

However, there are some special cases which we can handle.
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Special form primes
Let p and q be odd primes such that p = 2q + 1.
Then, p − 1 = 2q, so p − 1 is easily factored and the Lucas test
easily employed.

There are lots of examples of such pairs, e.g., q = 41 and p = 83.

How many primitive roots does p have?
We just saw the number is

φ(φ(p)) = φ(p − 1) = φ(2)φ(q) = q − 1.

Hence, the density of primitive roots in Z∗
p is

(q − 1)/(p − 1) = (q − 1)/2q ≈ 1/2.

This makes it easy to find primitive roots of p probabilistically —
choose a random element a ∈ Z∗

p and apply the Lucas test to it.
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Density of special form primes

We defer the question of the density of primes q such that 2q + 1
is also prime but remark that we can relax the requirements a bit.

Let q be a prime. Generate a sequence of numbers
2q + 1, 3q + 1, 4q + 1, . . . until we find a prime p = uq + 1.

By the prime number theorem, approximately one out of every
ln(q) numbers around the size of q will be prime.

While that applies to randomly chosen numbers, not the numbers
in this particular sequence, there is at least some hope that the
density of primes will be similar.

If so, we can expect that u will be about ln(q), in which case it
can easily be factored using exhaustive search. At that point, we
can apply the Lucas test as before to find primitive roots.
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