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Random functions

A uniform random function from domain M to range H is a
uniformly distributed element h chosen from the space of all
functions M→H.

Intuitively, for each m ∈M, h(m) is a uniformly distributed
random number chosen from H, but for any particular instantiation
of h, h(m) is a fixed value. That is, if h is evaluated several times
at the same argument m, then the answer is the same each time.

Contrast this to a function whose range is a random variable. For
example, suppose f (k) is a biased coin with probability of “heads”
equal to 1/k . Then f (3) is the distribution on coin flips that results
in “heads” with probability 1/3 and “tails” with probability 2/3.
Successive evaluations of f (3) could give either “heads” or “tails”.
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Cryptographic use of random functions

A random function h gives a way to protect the integrity of
messages.

Suppose Bob knows h(m) for Alice’s message m, and Bob receives
m′ from Alice. If h(m′) = h(m), then with very high probability,
m′ = m, and Bob can be assured of the integrity of m′.

The problem with this approach is that we have no succinct way of
describing random functions, so there is no way for Bob to
compute h(m′).
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Message digest functions

A message digest (also called a cryptographic hash or fingerprint)
function is a fixed (non-random) function that is designed to “look
like” a random function.

The goal is to preserve the integrity-checking property of random
functions: If Bob knows h(m) and he receives m′, then if
h(m′) = h(m), he can reasonably assume that m′ = m.

We now try to formalize what we require of a message digest
function in order to have this property.

We also show that message digest functions do not necessarily
“look random”, so one should not assume such functions share
other properties with random functions.
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Formal definition of message digest functions

Let M be a message space and H a hash value space, and assume
|M| � |H|.

A message digest (or cryptographic one-way hash or fingerprint)
function h maps M→H.

A collision is a pair of messages m1,m2 such that h(m1) = h(m2),
and we say that m1 and m2 collide.

Because |M| � |H|, h is very far from being one-to-one, and there
are many colliding pairs. Nevertheless, it should be hard for an
adversary to find collisions.

CPSC 467, Lecture 14 7/45



Outline Message Digests Hash Constructions Birthday

Collision-avoidance properties

We consider three increasingly strong versions of what it means to
be hard to find collisions:

I One-way: Given y ∈ H, it is hard to find m ∈M such that
h(m) = y .

I Weakly collision-free: Given m ∈M, it is hard to find
m′ ∈M such that m′ 6= m and h(m′) = h(m).

I Strongly collision-free: It is hard to find colliding pairs (m,m′).

These definitions are rather vague, for they ignore issues of what
we mean by “hard” and “find”.
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What does “hard” mean?

Intuitively, “hard” means that Mallory cannot carry out the
computation in a feasible amount of time on a realistic computer.
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What does “find” mean?

The term “find” may mean

I “always produces a correct answer”, or

I “produces a correct answer with high probability”, or

I “produces a correct answer on a significant number of
possible inputs with non-negligible probability”.

The latter notion of “find” says that Mallory every now and then
can break the system. For any given application, there is a
maximum acceptable rate of error, and we must be sure that our
cryptographic system meets that requirement.
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One-way function

What does it mean for h to be one-way?

It means that no probabilistic polynomial time algorithm Ah(y)
produces a pre-image m of y under h with more than negligible
probability of success. m is a pre-image of y if h(m) = y .

This is only required for random y chosen according to a particular
hash value distribution. There might be particular values of y on
which Ah does succeed with high probability.
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Hash value distribution

The hash value distribution we have in mind is the one induced by
h applied to uniformly distributed m ∈M. Thus,

the probability of y is proportional to |h−1(y)|.

This means that h can be considered one-way even though
algorithms do exist that succeed on low-probability subsets of H.
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Constructing one hash function from another

The following example might help clarify these ideas.

Let h(m) be a cryptographic hash function that produces hash
values of length n. Define a new hash function H(m) as follows:

H(m) =

{
0 ·m if |m| = n
1 · h(m) otherwise.

Thus, H produces hash values of length n + 1.

I H(m) is clearly collision-free since the only possible collisions
are for m’s of lengths different from n.

I Any colliding pair (m,m′) for H is also a colliding pair for h.

I Since h is collision-free, then so is H.
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H is one-way

Not so obvious is that H is one-way.

This is true, even though H can be inverted for 1/2 of all possible
hash values y , namely, those that begin with 0.

The reason this doesn’t violate the definition of one-wayness is
that only 2n values of m map to hash values that begin with 0,
and all the rest map to values that begin with 1.

Since we are assuming |M| � |H|, the probability that a uniformly
sampled m ∈M has length exactly n is small.
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Strong implies weak collision-free

There are some obvious relationships between properties of hash
functions that can be made precise once the underlying definitions
are made similarly precise.

Fact
If h is strong collision-free, then h is weak collision-free.
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Proof that strong ⇒ weak collision-free

Proof (Sketch).

Suppose h is not weak collision-free. We show that it is not strong
collision-free by showing how to enumerate colliding message pairs.

The method is straightforward:

I Pick a random message m ∈M.

I Try to find a colliding message m′.

I If we succeed, then output the colliding pair (m,m′).

I If not, try again with another randomly-chosen message.

Since h is not weak collision-free, we will succeed on a significant
number of the messages, so we will succeed in generating a
succession of colliding pairs.
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Speed of finding colliding pairs
How fast the pairs are enumerated depends on how often the
algorithm succeeds and how fast it is.

These parameters in turn may depend on how large M is relative
to H.

It is always possible that h is one-to-one on some subset U of
elements in M, so it is not necessarily true that every message has
a colliding partner.

However, an easy counting argument shows that U has size at
most |H| − 1.

Since we assume |M| � |H|, the probability that a
randomly-chosen message from M lies in U is correspondingly
small.
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Strong implies one-way

In a similar vein, we argue that strong collision-free implies
one-way.

Fact
If h is strong collision-free, then h is one-way.
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Proof that strong ⇒ one-way

Proof (Sketch).

Suppose h is not one-way. Then there is an algorithm A(y) for
finding m such that h(m) = y , and A(y) succeeds with significant
probability when y is chosen randomly with probability proportional
to the size of its preimage. Assume that A(y) returns ⊥ to
indicate failure.

A randomized algorithm to enumerate colliding pairs:

1. Choose random m.
2. Compute y = h(m).
3. Compute m′ = A(y).
4. If m′ 6∈ {⊥,m} then output (m,m′).
5. Start over at step 1.
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Proof (cont.)

Proof (continued).

Each iteration of this algorithm succeeds with significant
probability ε that is the product of the probability that A(y)
succeeds on y and the probability that m′ 6= m.

The latter probability is at least 1/2 except for those values m
which lie in the set of U of messages on which h is one-to-one
(defined in the previous proof).

Thus, assuming |M| � |H|, the algorithm outputs each colliding
pair in expected number of iterations that is only slightly larger
than 1/ε.

CPSC 467, Lecture 14 20/45



Outline Message Digests Hash Constructions Birthday

Weak implies one-way

These same ideas can be used to show that weak collision-free
implies one-way, but now one has to be more careful with the
precise definitions.

Fact
If h is weak collision-free, then h is one-way.
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Proof that weak ⇒ one-way

Proof (Sketch).

Suppose as before that h is not one-way, so there is an algorithm
A(y) for finding m such that h(m) = y , and A(y) succeeds with
significant probability when y is chosen randomly with probability
proportional to the size of its preimage.

Assume that A(y) returns ⊥ to indicate failure. We want to show
this implies that the weak collision-free property does not hold, that
is, there is an algorithm that, for a significant number of m ∈M,
succeeds with non-negligible probability in finding a colliding m′.
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Proof that weak ⇒ one-way (cont.)

We claim the following algorithm works:

Given input m:
1. Compute y = h(m).
2. Compute m′ = A(y).
3. If m′ 6∈ {⊥,m} then output (m,m′) and halt.
4. Otherwise, start over at step 1.

This algorithm fails to halt for m ∈ U, but the number of such m
is small (= insignificant) when |M| � |H|.
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Proof that weak ⇒ one-way (cont.)

It may also fail even when a colliding partner m′ exists if it
happens that the value returned by A(y) is m. (Remember, A(y)
is only required to return some preimage of y ; we can’t say which.)

However, corresponding to each such bad case is another one in
which the input to the algorithm is m′ instead of m. In this latter
case, the algorithm succeeds, since y is the same in both cases.
With this idea, we can show that the algorithm succeeds in finding
a colliding partner on at least half of the messages in M− U.
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Hash Function Constructions
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Extension

Extending a hash function

Suppose we are given a strong collision-free hash function

h : 256-bits→ 128-bits.

How can we use h to build a strong collision-free hash function

H : 512-bits→ 128-bits?

We consider several methods.

In the following, M is 512 bits long.
We write M = m1m2, where m1 and m2 are 256 bits each.
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Extension

Method 1

First idea. Define

H(M) = H(m1m2) = h(m1)⊕ h(m2).

Unfortunately, this fails to be either strong or weak collision-free.

Let M ′ = m2m1. (M,M ′) is always a colliding pair for H except in
the special case that m1 = m2.

Recall that (M,M ′) is a colliding pair iff H(M) = H(M ′) and
M 6= M ′.
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Extension

Method 2

Second idea. Define

H(M) = H(m1m2) = h(h(m1)h(m2)).

m1 and m2 are suitable arguments for h() since |m1| = |m2| = 256.

Also, h(m1)h(m2) is a suitable argument for h() since
|h(m1)| = |h(m2)| = 128.

Theorem
If h is strong collision-free, then so is H.
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Extension

Correctness proof for Method 2

Assume H has a colliding pair (M = m1m2, M ′ = m′1m′2).
Then H(M) = H(M ′) but M 6= M ′.

Case 1: h(m1) 6= h(m′1) or h(m2) 6= h(m′2).
Let u = h(m1)h(m2) and u′ = h(m′1)h(m′2).
Then h(u) = H(M) = H(M ′) = h(u′), but u 6= u′.
Hence, (u, u′) is a colliding pair for h.

Case 2: h(m1) = h(m′1) and h(m2) = h(m′2).
Since M 6= M ′, then m1 6= m′1 or m2 6= m′2 (or both).
Whichever pair is unequal is a colliding pair for h.

In each case, we have found a colliding pair for h.

Hence, H not strong collision-free ⇒ h not strong collision-free.
Equivalently, h strong collision-free ⇒ H strong collision-free.
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Chaining

A general chaining method

Let h : r -bits→ t-bits be a hash function, where r ≥ t + 2.
(In the above example, r = 256 and t = 128.)
Define H(m) for m of arbitrary length.

I Divide m after appropriate padding into blocks m1m2 . . .mk ,
each of length r − t − 1.

I Compute a sequence of t-bit states:

s1 = h(0t0m1)
s2 = h(s11m2)

...
sk = h(sk−11mk).

Then H(m) = sk .
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Chaining

Chaining construction gives strong collision-free hash

Theorem
Let h be a strong collision-free hash function. Then the hash
function H constructed from h by chaining is also strong
collision-free.
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Chaining

Correctness proof

Assume H has a colliding pair (m,m′).
We find a colliding pair for h.

I Let m = m1m2 . . .mk give state sequence s1, . . . , sk .

I Let m′ = m′1m′2 . . .m′k ′ give state sequence s ′1, . . . , s ′k ′ .

Assume without loss of generality that k ≤ k ′.

Because m and m′ collide under H, we have sk = s ′k ′ .
Let r be the largest value for which sk−r = s ′k ′−r .

Let i = k − r , the index of the first such equal pair si = s ′k ′−k+i .

We proceed by cases.
(continued. . . )
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Chaining

Correctness proof (case 1)

Case 1: i = 1 and k = k ′.

Then sj = s ′j for all j = 1, . . . , k .

Because m 6= m′, there must be some ` such that m` 6= m′`.

If ` = 1, then (0t0m1, 0t0m′1) is a colliding pair for h.

If ` > 1, then (s`−11m`, s ′`−11m′`) is a colliding pair for h.
(continued. . . )
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Chaining

Correctness proof (case 2)

Case 2: i = 1 and k < k ′.

Let u = k ′ − k + 1.

Then s1 = s ′u.

Since u > 1 we have that

h(0t0m1) = s1 = s ′u = h(s ′u−11m′u),

so (0t0m1, s ′u−11m′u) is a colliding pair for h.

Note that this is true even if 0t = s ′u−1 and m1 = m′u, a possibility
that we have not ruled out.

(continued. . . )
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Chaining

Correctness proof (case 3)

Case 3: i > 1.

Then u = k ′ − k + i > 1.

By choice of i , we have si = s ′u, but si−1 6= s ′u−1.

Hence,
h(si−11mi ) = si = s ′u = h(s ′u−11m′u),

so (si−11mi , s ′u−11m′u) is a colliding pair for h.
(continued. . . )
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Chaining

Correctness proof (conclusion)

In each case, we found a colliding pair for h.

The contradicts the assumption that h is strong collision-free.

Hence, H is also strong collision-free.
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Non-random

Hash values can look non-random

Intuitively, we like to think of h(y) as being “random-looking”,
with no obvious pattern.

Indeed, it would seem that obvious patterns and structure in h
would provide a means of finding collisions, violating the property
of being strong-collision free.

But this intuition is faulty, as I now show.
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Non-random

Example of a non-random-looking hash function

Suppose h is a strong collision-free hash function.

Define H(x) = 0 · h(x).

If (x , x ′) is a colliding pair for H, then (x , x ′) is also a colliding pair
for h.

Thus, H is strong collision-free, despite the fact that the string
H(x) always begins with 0.

Later on, we will talk about how to make functions that truly do
appear to be random (even though they are not).
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Birthday Attack on Hash Functions
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Bits of security for hash functions
MD5 hash function produces 128-bit values, whereas the SHA–xxx
family produces values of 160-bits or more.

How many bits do we need for security?

Both 128 and 160 are more than large enough to thwart a brute
force attack that simply searches randomly for colliding pairs.

However, the Birthday Attack reduces the size of the search space
to roughly the square root of the original size.

MD5’s effective security is at most 64 bits. (
√

2128 = 264.)

SHA–1’s effective security is at most 80-bits. (
√

2160 = 280.)

Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu describe an attack
that reduces this number to only 69-bits (Crypto 2005).
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Birthday Paradox

The birthday paradox is to find the probability that two people in a
set of randomly chosen people have the same birthday.

This probability is greater than 50% in any set of at least 23
randomly chosen people.1.

23 is far less than the 253 people that are needed for the
probability to exceed 50% that at least one of them was born on a
specific day, say January 1.

1See Wikipedia, “Birthday paradox”.
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Birthday Paradox (cont.)

Here’s why it works.

The probability of not having two people with the same birthday is
is

q =
365

365
· 364

365
· · · 343

365
= 0.492703

Hence, the probability that (at least) two people have the same
birthday is 1− q = 0.507297.

This probability grows quite rapidly with the number of people in
the room. For example, with 46 people, the probability that two
share a birthday is 0.948253.
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Birthday attack on hash functions
The birthday paradox gives a much faster way to find colliding
pairs of a hash function than simply choosing pairs at random.

Method: Choose a random set of k messages and see if any
two messages in the set collide.

Thus, with only k evaluations of the hash function, we can test(k
2

)
= k(k − 1)/2 different pairs of messages for collisions.

Of course, these
(k
2

)
pairs are not uniformly distributed, so one

needs a birthday-paradox style analysis of the probability that a
colliding pair will be found.

The general result is that the probability of success is at least 1/2
when k ≈

√
n, where n is the size of the hash value space.
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Practical difficulties of birthday attack

Two problems make this attack difficult to use in practice.

1. One must find duplicates in the list of hash values.
This can be done in time O(k log k) by sorting.

2. The list of hash values must be stored and processed.

For MD5, k ≈ 264. To store k 128-bit hash values requires 268

bytes ≈ 250 exabytes = 250,000 petabytes of storage.

To sort would require log2(k) = 64 passes over the table, which
would process 16 million petabytes of data.
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A back-of-the-envelope calculation

Google was reportedly processing 20 petabytes of data per day in
2008. At this rate, it would take Google more than 800,000 days
or nearly 2200 years just to sort the data.

This attack is still infeasible for values of k needed to break hash
functions. Nevertheless, it is one of the more subtle ways that
cryptographic primitives can be compromised.
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