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Building hash functions from cryptosystems

We’ve already seen several cryptographic hash functions as well as
methods for making new hash functions from old.

We describe a way to make a hash function from a symmetric
cryptosystem with encryption function Ek(b).

Assume the key and block lengths are the same. (This rules out
DES but not AES with 128-bit keys.)

CPSC 467, Lecture 15 4/41



Outline Hash from Cryptosystem Passwords Chinese remainder Quadratic Residues

The construction

Let m be a message of arbitrary length. Here’s how to compute
H(m).

I Pad m appropriately and divide it into block lengths
appropriate for the cryptosystem.

I Compute the following state sequence:

s0 = IV
s1 = f (s0,m1)

...
st = f (st−1,mt).

I Define H(m) = st .

IV is an initial vector and f is a function built from E .
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Possible state transition functions f (s,m)

Some possibilities for f are

f1(s,m) = Es(m)⊕m
f2(s,m) = Es(m)⊕m ⊕ s
f3(s,m) = Es(m ⊕ s)⊕m
f4(s,m) = Es(m ⊕ s)⊕m ⊕ s

You should think about why these particular functions do or do not
lead to a strong collision-free hash function.
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A bad state transition function

For example, if t = 1 and f = f1, then

H(m) = f1(IV ,m) = EIV (m)⊕m.

EIV itself is one-to-one (since it’s an encryption function), but
what can we say about H1(m)?

Indeed, if bad luck would have it that EIV is the identity function,
then H(m) = 0 for all m, and all pairs of message blocks collide!
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Authentication Using Passwords
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Authentication problem

The authentication problem

The authentication problem is to identify whom one is
communicating with.

For example, if Alice and Bob are communicating over a network,
then Bob would like to know that he is talking to Alice and not to
someone else on the network.

Knowing the IP address or URL is not adequate since Mallory
might be in control of intermediate routers and name servers.

As with signature schemes, we need some way to differentiate the
real Alice from other users of the network.
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Authentication problem

Possible authentication factors

Alice can be authenticated in one of three ways:

1. By something she knows;

2. By something she possesses;

3. By something she is.

Examples:

1. A secret password;

2. A smart card;

3. Biometric data such as a fingerprint.
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Passwords authentication schemes

Passwords

Assume that Alice possess some secret that is not known to
anyone else. She authenticates herself by proving that she knows
the secret.

Password mechanisms are widely used for authentication.

In the usual form, Alice authenticates herself by sending her
password to Bob.

Bob checks that it matches Alice’s password and grants access.

This is the scheme that is used for local logins to a computer and
is also used for remote authentication on many web sites.
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Passwords authentication schemes

Weaknesses of password schemes

Password schemes have two major security weaknesses.

1. Passwords may be exposed to Eve when being used.

2. After Alice authenticates herself to Bob, Bob can use Alice’s
password to impersonate Alice.
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Passwords authentication schemes

Password exposure

Passwords sent over the network in the clear are exposed to various
kinds of eavesdropping, ranging from ethernet packet sniffers on
the LAN to corrupt ISP’s and routers along the way.

The threat of password capture in this way is so great that one
should never send a password over the internet in the clear.
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Passwords authentication schemes

Some precautions

Users of the old insecure Unix tools should switch to secure
replacements such as ssh, slogin, and scp, or kerberized versions of
telnet and ftp.

Web sites requiring user logins generally use the TSL/SSL
(Transport Layer Security/Secure Socket Layer) protocol to
encrypt the connection, making it safe to transmit passwords to
the site, but some do not.

Depending on how your browser is configured, it will warn you
whenever you attempt to send unencrypted data back to the server.
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Passwords authentication schemes

Password propagation

After Alice’s password reaches the server, it is no longer the case
that only she knows her password.

Now the server knows it, too!

This is no problem if Alice only uses her password to log into that
that particular server.

However, if she uses the same password for other web sites, the
first server can impersonate Alice to any other web site where Alice
uses the same password.

CPSC 467, Lecture 15 15/41



Outline Hash from Cryptosystem Passwords Chinese remainder Quadratic Residues

Passwords authentication schemes

Multiple web sites

Users these days typically have accounts with dozens or hundreds
of different web sites.

The temptation is strong to use the same username-password pairs
on all sites so that they can be remembered.

But that means that anyone with access to the password database
on one site can log into Alice’s account on any of the other sites.

Typically different sites have very differing sensitivity of the data
they protect.

An on-line shopping site may only be protecting a customer’s
shopping cart, whereas a banking site allows access to a customer’s
bank account.
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Passwords authentication schemes

Password policy advice

My advice is to use a different password for each account.

Of course, nobody can keep dozens of different passwords straight,
so the downside of my suggestion is that the passwords must be
written down and kept safe, or stored in a properly-protected
password vault.

If the primary copy gets lost or compromised, then one should have
a backup copy so that one can go to all of the sites ASAP and
change the passwords (and learn if the site has been compromised).

The real problem with simple password schemes is that Alice is
required to send her secrets to other parties in order to use them.
We will later explore authentication schemes that do not require
this.
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Secure password storage

Secure password storage

Another issue with traditional password authentication schemes is
the need to store the passwords on the server for later verification.

I The file in which passwords are store is highly sensitive.

I Operating system protections can (and should) be used to
protect it, but they are not really sufficient.

I Legitimate sysadmins might use passwords found there to log
into users’ accounts at other sites.

I Hackers who manage to break into the computer and obtain
root privileges can do the same thing.

I Finally, backup copies may not be subject to the same system
protections, so someone with access to a backup device could
read everybody’s password from it.
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Secure password storage

Storing encrypted passwords

Rather than store passwords in the clear, it is usual to store
“encrypted” passwords.

That is, the hash value of the password under some cryptographic
hash function is stored instead of the password itself.
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Secure password storage

Using encrypted passwords

The authentication function

I takes the cleartext password from the user,

I computes its hash value,

I and checks that the computed and stored hashed values
match.

Since the password does not contain the actual password, and it is
computationally difficult to invert a cryptographic hash function,
knowledge of the hash value does not allow an attacker to easily
find the password.
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Dictionary attacks

Dictionary attacks on encrypted passwords

Access to an encrypted password file opens up the possibility of a
dictionary attack.

Many users choose weak passwords—words that appear in an
English dictionary or in other available sources of text.

If one has access to the password hashes of legitimate users on the
computer (such as is contained in /etc/passwd on Unix), an
attacker can hash every word in the dictionary and then look for
matches with the password file entries.
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Dictionary attacks

Harm from dictionary attacks

A dictionary attack is quite likely to succeed in compromising at
least a few accounts on a typical system.

Even one compromised account is enough to allow the hacker to
log into the system as a legitimate user, from which other kinds of
attacks are possible that cannot be carried out from the outside.
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Dictionary attacks

Salt

Adding salt is a way to make dictionary attacks more expensive.

I Salt is a random number that is stored along with the hashed
password in the password file.

I The hash function takes two arguments, the password and
salt, and produces a hash value.

I Because the salt is stored (in the clear) in the password file,
the user’s password can be easily verified.

I The same password hashes differently depending on the salt.

I A successful dictionary attack now has to encrypt the entire
dictionary with every possible salt value (or at least with every
salt value that appears in the password file being attacked).

I This increases the cost of the attack by orders of magnitude.
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Chinese Remainder Theorem

CPSC 467, Lecture 15 24/41



Outline Hash from Cryptosystem Passwords Chinese remainder Quadratic Residues

Systems of congruence equations

Theorem (Chinese remainder theorem)

Let n1, n2, . . . , nk be positive pairwise relatively-prime integers1, let
n =

∏k
i=1 ni , and let ai ∈ Zni for i = 1, . . . , k. Consider the system

of congruence equations with unknown x:

x ≡ a1 (mod n1)
x ≡ a2 (mod n2)

...
x ≡ ak (mod nk)

(1)

(1) has a unique solution x ∈ Zn.

1This means that gcd(ni , nj) = 1 for all 1 ≤ i < j ≤ k.
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How to solve congruence equations
To solve for x , let

Ni = n/ni = n1n2 . . . ni−1︸ ︷︷ ︸ · ni+1 . . . nk︸ ︷︷ ︸,
and compute Mi = N−1

i mod ni , for 1 ≤ i ≤ k .

N−1
i (mod ni ) exists since gcd(Ni , ni ) = 1. (Why?)

We can compute N−1
i by solving the associated Diophantine

equation as described in Lecture 10.

The solution to (1) is

x = (
k∑

i=1

aiMiNi ) mod n (2)
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Correctness

Lemma

MjNj ≡
{

1 (mod ni ) if j = i ;
0 (mod ni ) if j 6= i .

Proof.
MiNi ≡ 1 (mod ni ) since Mi = N−1

i mod ni .
If j 6= i , then MjNj ≡ 0 (mod ni ) since ni |Nj .

It follows from the lemma and the fact that ni |n that

x ≡
k∑

i=1

aiMiNi ≡ ai (mod ni ) (3)

for all 1 ≤ i ≤ k , establishing that (2) is a solution of (1).
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Uniqueness

To see that the solution is unique in Zn, let
χ : Zn → Zn1 × . . .× Znk be the mapping

x 7→ (x mod n1, . . . , x mod nk).

χ is a surjection2 since χ(x) = (a1, . . . , ak) iff x satisfies (1).

Since also |Zn| = |Zn1 × . . .× Znk |, χ is a bijection, and there is
only one solution to (1) in Zn.

2A surjection is an onto function.
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An alternative proof of uniqueness

A less slick but more direct way of seeing uniqueness is to suppose
that x = u and x = v are both solutions to (1).

Then u ≡ v (mod ni ), so ni |(u − v) for all i .

By the pairwise relatively prime condition on the ni , it follows that
n|(u − v), so u ≡ v (mod n). Hence, the solution is unique in Zn.
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Quadratic Residues, Squares, and Square

Roots
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Square roots in Z∗n

Recall from lecture 13 that to find points on an elliptic curve
requires solving the equation

y2 = x3 + ax + b

for y (mod p), and that requires computing square roots in Z∗
p.

Squares and square roots have several other cryptographic
applications as well.

Today, we take a brief tour of the theory of quadratic resides.
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Quadratic residues modulo n

An integer b is a square root of a modulo n if

b2 ≡ a (mod n).

An integer a is a quadratic residue (or perfect square) modulo n if
it has a square root modulo n.
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Quadratic residues in Z∗n
If a, b ∈ Zn and b2 ≡ a (mod n), then

b ∈ Z∗
n iff a ∈ Z∗

n.

Why? Because

gcd(b, n) = 1 iff gcd(a, n) = 1

This follows from the fact that b2 = a + un for some u, so if p is a
prime divisor of n, then

p |b iff p |a.

Assume that all quadratic residues and square roots are in Z∗
n

unless stated otherwise.
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QRn and QNRn

We partition Z∗
n into two parts.

QRn = {a ∈ Z∗
n | a is a quadratic residue modulo n}.

QNRn = Z∗
n −QRn.

QRn is the set of quadratic residues modulo n.

QNRn is the set of quadratic non-residues modulo n.

For a ∈ QRn, we sometimes write

√
a = {b ∈ Z∗

n | b2 ≡ a (mod n)},

the set of square roots of a modulo n.
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Quadratic residues in Z∗15

The following table shows all elements of
Z∗
15 = {1, 2, 4, 7, 8, 11, 13, 14} and their squares.

b b2 mod 15

1 1
2 4
4 1
7 4

8 = −7 4
11 = −4 1
13 = −2 4
14 = −1 1

Thus, QR15 = {1, 4} and QNR15 = {2, 7, 8, 11, 13, 14}.

CPSC 467, Lecture 15 35/41



Outline Hash from Cryptosystem Passwords Chinese remainder Quadratic Residues

Sqrt mod p

Quadratic residues modulo an odd prime p

Fact
For an odd prime p,

I Every a ∈ QRp has exactly two square roots in Z∗
p;

I Exactly 1/2 of the elements of Z∗
p are quadratic residues.

In other words, if a ∈ QRp,

|
√
a| = 2.

|QRn| = |Z∗
p|/2 =

p − 1

2
.
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Sqrt mod p

Quadratic residues in Z∗11

The following table shows all elements b ∈ Z∗
11 and their squares.

b b2 mod 11

1 1
2 4
3 9
4 5
5 3

b −b b2 mod 11

6 −5 3
7 −4 5
8 −3 9
9 −2 4

10 −1 1

Thus, QR11 = {1, 3, 4, 5, 9} and QNR11 = {2, 6, 7, 8, 10}.
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Sqrt mod p

Proof that |
√
a| = 2 modulo an odd prime p

Let a ∈ QRp.

I It must have a square root b ∈ Z∗
p.

I (−b)2 ≡ b2 ≡ a (mod p), so −b ∈
√
a.

I Moreover, b 6≡ −b (mod p) since p ∼| 2b, so |
√
a| ≥ 2.

I Now suppose c ∈
√
a. Then c2 ≡ a ≡ b2 (mod p).

I Hence, p |c2 − b2 = (c − b)(c + b).

I Since p is prime, then either p |(c − b) or p |(c + b) (or both).

I If p |(c − b), then c ≡ b (mod p).

I If p |(c + b), then c ≡ −b (mod p).

I Hence, c = ±b, so
√
a = {b,−b}, and |

√
a| = 2.
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Sqrt mod p

Proof that half the elements of Z∗p are in QRp

I Each b ∈ Z∗
p is the square root of exactly one element of QRp.

I The mapping b 7→ b2 mod p is a 2-to-1 mapping from Z∗
p to

QRp.

I Therefore, |QRp| = 1
2 |Z

∗
p| as desired.
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Sqrt mod pq

Quadratic residues modulo pq
We now turn to the case where n = pq is the product of two
distinct odd primes.

Fact
Let n = pq for p, q distinct odd primes.

I Every a ∈ QRn has exactly four square roots in Z∗
n;

I Exactly 1/4 of the elements of Z∗
n are quadratic residues.

In other words, if a ∈ QRn,

|
√
a| = 4.

|QRn| = |Z∗
n|/4 =

(p − 1)(q − 1)

4
.
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Sqrt mod pq

Proof sketch

I Let a ∈ QRn. Then a ∈ QRp and a ∈ QRq.
I There are numbers bp ∈ QRp and bq ∈ QRq such that

I
√
a (mod p) = {±bp}, and

I
√
a (mod q) = {±bq}.

I Each pair (x , y) with x ∈ {±bp} and y ∈ {±bq} can be
combined to yield a distinct element bx ,y in

√
a (mod n).3

I Hence, |
√
a (mod n)| = 4, and |QRn| = |Z∗

n|/4.

3To find bx,y from x and y requires use of the Chinese Remainder theorem.
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