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Euler criterion
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Testing for membership in QRp

Theorem (Euler Criterion)

An integer a is a non-trivial1 quadratic residue modulo an odd
prime p iff

a(p−1)/2 ≡ 1 (mod p).

Proof in forward direction.
Let a ≡ b2 (mod p) for some b 6≡ 0 (mod p). Then

a(p−1)/2 ≡ (b2)(p−1)/2 ≡ bp−1 ≡ 1 (mod p)

by Euler’s theorem, as desired.

1A non-trivial quadratic residue is one that is not equivalent to 0 (mod p).
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Proof of Euler Criterion

Proof in reverse direction.
Suppose a(p−1)/2 ≡ 1 (mod p). Clearly a 6≡ 0 (mod p). We find a
square root b of a modulo p.

Let g be a primitive root of p. Choose k so that a ≡ gk (mod p),
and let ` = (p − 1)k/2. Then

g ` ≡ g (p−1)k/2 ≡ (gk)(p−1)/2 ≡ a(p−1)/2 ≡ 1 (mod p).

Since g is a primitive root, (p − 1) |`. Hence, 2|k and k/2 is an
integer.

Let b = gk/2. Then b2 ≡ gk ≡ a (mod p), so b is a non-trivial
square root of a modulo p, as desired.
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Finding Square Roots
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Special primes

Finding square roots modulo prime p ≡ 3 (mod 4)

The Euler criterion lets us test membership in QRp for prime p,
but it doesn’t tell us how to quickly find square roots. They are
easily found in the special case when p ≡ 3 (mod 4).

Theorem
Let p ≡ 3 (mod 4), a ∈ QRp. Then b = a(p+1)/4 ∈

√
a (mod p).

Proof.
p + 1 is divisible by 4, so (p + 1)/4 is an integer. Then

b2 ≡ (a(p+1)/4)2 ≡ a(p+1)/2 ≡ a1+(p−1)/2 ≡ a · 1 ≡ a (mod p)

by the Euler Criterion.
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General primes

Finding square roots for general primes

We now present an algorithm due to D. Shanks2 that finds square
roots of quadratic residues modulo any odd prime p.

2Shanks’s algorithm appeared in his paper, “Five number-theoretic
algorithms”, in Proceedings of the Second Manitoba Conference on Numerical
Mathematics, Congressus Numerantium, No. VII, 1973, 51–70. Our treatment
is taken from the paper by Jan-Christoph Schlage-Puchta”, “On Shank’s
Algorithm for Modular Square Roots”, Applied Mathematics E-Notes, 5
(2005), 84–88.
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General primes

Shank’s algorithm

Let p be an odd prime. Write φ(p) = p − 1 = 2st, where t is odd.
(Recall: s is # trailing 0’s in the binary expansion of p − 1.)

Because p is odd, p − 1 is even, so s ≥ 1.
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General primes

A special case

In the special case when s = 1, then p − 1 = 2t, so p = 2t + 1.

Writing the odd number t as 2`+ 1 for some integer `, we have

p = 2(2`+ 1) + 1 = 4`+ 3,

so p ≡ 3 (mod 4).

This is exactly the case that we handled above.
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General primes

Overall structure of Shank’s algorithm

Let p − 1 = 2st be as above, where p is an odd prime.

Assume a ∈ QRp is a quadratic residue and u ∈ QNRp is a
quadratic non-residue.

We can easily find u by choosing random elements of Z∗
p and

applying the Euler Criterion.

The goal is to find x such that x2 ≡ a (mod p).
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General primes

Shanks’s algorithm

1. Let s, t satisfy p − 1 = 2st and t odd.
2. Let u ∈ QNRp.
3. k = s
4. z = ut mod p
5. x = a(t+1)/2 mod p
6. b = at mod p
7. while (b 6≡ 1 (mod p)) {
8. let m be the least integer with b2m ≡ 1 (mod p)

9. y = z2k−m−1

mod p
10. z = y2 mod p
11. b = bz mod p
12. x = xy mod p
13. k = m
14. }
15. return x

CPSC 467, Lecture 16 12/48



Outline Euler criterion Finding sqrt QR crypto Authentication

General primes

Loop invariant

The congruence
x2 ≡ ab (mod p)

is easily shown to be a loop invariant.

It’s clearly true initially since x2 ≡ at+1 and b ≡ at (mod p).

Each time through the loop, a is unchanged, b gets multiplied by
y2 (lines 10 and 11), and x gets multiplied by y (line 12); hence
the invariant remains true regardless of the value of y .

If the program terminates, we have b ≡ 1 (mod p), so x2 ≡ a, and
x is a square root of a (mod p).
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General primes

Termination proof (sketch)

The algorithm terminates after at most s − 1 iterations of the loop.

To see why, we look at the orders3 of b and z (mod p) and show
the following loop invariant:

At the start of each loop iteration (before line 8), ord(b)
is a power of 2 and ord(b) < ord(z) = 2k .

After line 8, m < k since 2m = ord(b) < 2k . Line 13 sets k = m
for the next iteration, so k decreases on each iteration.

The loop terminates when b ≡ 1 (mod p). Then ord(b) = 1 < 2k ,
so k ≥ 1. Hence, the loop is executed at most s − 1 times.

3Recall that the order of an element g modulo p is the least positive integer
k such that g k ≡ 1 (mod p).
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QR Probabilistic Cryptosystem
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A hard problem associated with quadratic residues

Let n = pq, where p and q are distinct odd primes.

Recall that each a ∈ QRn has 4 square roots, and 1/4 of the
elements in Z∗

n are quadratic residues.

Some elements of Z∗
n are easily recognized as non-residues, but

there is a subset of non-residues (which we denote as Q00
n ) that are

hard to distinguish from quadratic residues without knowing p
and q.

This allows for public key encryption of single bits: A random
element of QRn encrypts 1; a random element of Q00

n encrypts 0.
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Quadratic residues modulo n = pq
Let n = pq, p, q distinct odd primes.

We divide the numbers in Z∗
n into four classes depending on their

membership in QRp and QRq.4

I Let Q11
n = {a ∈ Z∗

n | a ∈ QRp ∩QRq}.
I Let Q10

n = {a ∈ Z∗
n | a ∈ QRp ∩QNRq}.

I Let Q01
n = {a ∈ Z∗

n | a ∈ QNRp ∩QRq}.
I Let Q00

n = {a ∈ Z∗
n | a ∈ QNRp ∩QNRq}.

Under these definitions, QRn = Q11
n

QNRn = Q00
n ∪ Q01

n ∪ Q10
n

4To be strictly formal, we classify a ∈ Z∗
n according to whether or not

(a mod p) ∈ QRp and whether or not (a mod q) ∈ QRq.
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Quadratic residuosity problem

Definition (Quadratic residuosity problem)

The quadratic residuosity problem is to decide, given
a ∈ Q00

n ∪ Q11
n , whether or not a ∈ Q11

n .

Fact
There is no known feasible algorithm for solving the quadratic
residuosity problem that gives the correct answer significantly more
than 1/2 the time for uniformly distributed random a ∈ Q00

n ∪Q11
n ,

unless the factorization of n is known.
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Goldwasser-Micali probabilistic cryptosystem

The Goldwasser-Micali cryptosystem is based on the assumed
hardness of the quadratic residuosity problem.

The public key consist of a pair e = (n, y), where n = pq for
distinct odd primes p, q, and y is any member of Q00

n .
The private key consists of p.
The message space is M = {0, 1}. (Single bits!)

To encrypt m ∈M, Alice chooses a random r ∈ Z∗
n and sets

a = r2 mod p. The result a is a random element of QRn = Q11
n .

If m = 0, set c = a (which is in Q11
n ).

If m = 1, set c = ay mod n (which is in Q00
n ).

The problem of finding m given c is equivalent to the problem of
testing if c ∈ QRn(= Q11

n ), given that c ∈ Q00
n ∪ Q11

n .
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Decryption in Goldwasser-Micali encryption

Bob, knowing the private key p, can use the Euler Criterion to
quickly determine whether or not c ∈ QRp and hence whether
c ∈ Q11

n or c ∈ Q00
n , thereby determining m.

Eve’s problem of determining whether c encrypts 0 or 1 is the
same as the problem of distinguishing between membership in Q00

n

and Q11
n , which is just the quadratic residuosity problem, assuming

the ciphertexts are uniformly distributed.

One can show that every element of Q11
n is equally likely to be

chosen as the ciphertext c in case m = 0, and every element of
Q00

n is equally likely to be chosen as the ciphertext c in case
m = 1. If the messages are also uniformly distributed, then any
element of Q00

n ∪ Q11
n is equally likely to be the ciphertext.
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Summary

Important facts about quadratic residues

1. If p is odd prime, then |QRp| = |Z∗
p|/2, and for each

a ∈ QRp, |
√

a| = 2.

2. If n = pq, p 6= q odd primes, then |QRn| = |Z∗
n|/4, and for

each a ∈ QRn, |
√

a| = 4.

3. Euler criterion: a ∈ QRp iff a(p−1)/2 ≡ 1 (mod p), p odd
prime.

4. If n is odd prime, a ∈ QRn, can feasibly find y ∈
√

a.

5. If n = pq, p 6= q odd primes, then distinguishing Q00
n from

Q11
n is believed to be infeasible. Hence, infeasible to find

y ∈
√

a. Why?
If not, one could attempt to find y ∈

√
a, check that y2 ≡ a

(mod n), and conclude that a ∈ Q11 if successful.
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Authentication While Preventing

Impersonation
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Preventing impersonation

A fundamental problem with all of the password authentication
schemes discussed so far is that Alice reveals her secret to Bob
every time she authenticates herself.

This is fine when Alice trusts Bob but not otherwise.

After authenticating herself once to Bob, then Bob can
masquerade as Alice and impersonate her to others.
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Authentication requirement

When neither Alice nor Bob trust each other, there are two
requirements that must be met:

1. Bob wants to make sure that an impostor cannot successfully
masquerade as Alice.

2. Alice wants to make sure that her secret remains secure.

At first sight these seem contradictory, but there are ways for Alice
to prove her identity to Bob without compromising her secret.
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Challenge-response

Challenge-Response Authentication Protocols
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Challenge-response

Challenge-response authentication protocols

In a challenge-response protocol, Bob presents Alice with a
challenge that only the true Alice (or someone knowing Alice’s
secret) can answer.

Alice answers the challenge and sends her answer to Bob, who
verifies that it is correct.

Bob learns the response to his challenge but Alice never reveals her
secret.

If the protocol is properly designed, it will be hard for Bob to
determine Alice’s secret, even if he chooses the challenges with
that end in mind.
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Challenge-response

Challenge-response protocol from a signature scheme

A challenge-response protocol can be built from a digital signature
scheme (SA,VA).

(The same protocol can also be implemented using a symmetric
cryptosystem with shared key k .)

Alice Bob

1.
r←− Choose random string r .

2. Compute s = SA(r)
s−→ Check VA(r , s).
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Challenge-response

Requirements on underlying signature scheme

This protocol exposes Alice’s signature scheme to a chosen
plaintext attack.

A malicious Bob can get Alice to sign any message of his choosing.

Alice had better have a different signing key for use with this
protocol than she uses to sign contracts.

While we hope our cryptosystems are resistant to chosen plaintext
attacks, such attacks are very powerful and are not easy to defend
against.

Anything we can do to limit exposure to such attacks can only
improve the security of the system.
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Challenge-response

Limiting exposure to chosen plaintext attack: try 1
We explore some ways that Alice might limit Bob’s ability to carry
out a chosen plaintext attack.

Instead of letting Bob choose the string r for Alice to sign, r is
constructed from two parts, r1 and r2.

r1 is chosen by Alice; r2 is chosen by Bob. Alice chooses first.

Alice Bob

1. Choose random string r1
r1−→

2.
r2←− Choose random string r2.

3. Compute r = r1 ⊕ r2 Compute r = r1 ⊕ r2

4. Compute s = SA(r)
s−→ Check VA(r , s).
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Challenge-response

Problem with try 1

The idea is that neither party should be able to control r .

Unfortunately, that idea does not work here because Bob gets r1
before choosing r2.

Instead of choosing r2 randomly, a cheating Bob can choose
r2 = r ⊕ r1, where r is the string that he wants Alice to sign.

Thus, try 1 is no more secure against chosen plaintext attack than
the original protocol.
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Challenge-response

Limiting exposure to chosen plaintext attack: try 2

Another possibility is to choose the random strings in the other
order—Bob chooses first.

Alice Bob

1.
r2←− Choose random string r2.

2. Choose random string r1
r1−→

3. Compute r = r1 ⊕ r2 Compute r = r1 ⊕ r2

4. Compute s = SA(r)
s−→ Check VA(r , s).
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Challenge-response

Try 2 stops chosen plaintext attack

Now Alice has complete control over r .

No matter how Bob chooses r2, Alice’s choice of a random string
r1 ensures that r is also random.

This thwarts Bob’s chosen plaintext attack since r is completely
random.

Thus, Alice only signs random messages.
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Challenge-response

Problem with try 2

Unfortunately, try 2 is totally insecure against active eavesdroppers.
Why?

Suppose Mallory listens to a legitimate execution of the protocol
between Alice and Bob.

From this, he easily acquires a valid signed message (r0, s0).
How does this help Mallory?

Mallory sends r1 = r0 ⊕ r2 in step 2 and s = s0 in step 4.

Bob computes r = r1 ⊕ r2 = r0 in step 3, so his verification in
step 4 succeeds.

Thus, Mallory can successfully impersonate Alice to Bob.
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Challenge-response

Further improvements

Possible improvements to both protocols.

1. Let r = r1 · r2 (concatenation).

2. Let r = h(r1 · r2), where h is a cryptographic hash function.

In both cases, neither party now has full control over r .

This weakens Bob’s ability to launch a chosen plaintext attack if
Alice chooses first.

This weakens Mallory’s ability to impersonate Alice if Bob chooses
first.
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Feige-Fiat-Shamir

Feige-Fiat-Shamir Authentication Protocol
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Feige-Fiat-Shamir

Concept of zero knowledge

In all of the challenge-response protocols above, Alice releases
some partial information about her secret by producing signatures
that Bob could not compute by himself.

The Feige-Fiat-Shamir protocol allows Alice to prove knowledge of
her secret without revealing any information about the secret itself.

Such protocols are called zero knowledge, which we will discuss
shortly.
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Feige-Fiat-Shamir

Feige-Fiat-Shamir protocol: overview

Alice authenticates herself by successfully completing several
rounds of a protocol that requires knowledge of a secret s.

In a single round, protocol, Bob has at least a 50% chance of
catching an impostor Mallory.

By repeating the protocol t times, the error probability (that is,
the probability that Bob fails to catch Mallory) drops to 1/2t .

This can be made acceptably low by choosing t to be large enough.

For example, if t = 20, then Mallory has only one chance in a
million of successfully impersonating Alice.
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Feige-Fiat-Shamir

Feige-Fiat-Shamir protocol: preparation

The Feige-Fiat-Shamir protocol is based on the difficulty of
computing square roots modulo composite numbers.

I Alice chooses n = pq, where p and q are distinct large primes.

I Next she picks a quadratic residue v ∈ QRn (which she can
easily do by choosing a random element u ∈ Z∗

n and letting
v = u2 mod n).

I Finally, she chooses s to be the smallest square root of v−1

(mod n).5 She can do this since she knows the factorization
of n.

She makes n and v public and keeps s private.

5Note that if v is a quadratic residue, then so is v−1 (mod n).
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Feige-Fiat-Shamir

A simplified one-round FFS protocol
Here’s a simplified one-round version.

Alice Bob

1. Choose random r ∈ Zn.

Compute x = r2 mod n.
x−→

2.
b←− Choose random b ∈ {0, 1}.

3. Compute y = rsb mod n.
y−→ Check x = y2vb mod n.

When both parties are honest, Bob accepts Alice because

x = y2vb mod n.

This holds because

y2vb ≡ (rsb)2vb ≡ r2(s2v)b ≡ x(v−1v)b ≡ x (mod n).
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Feige-Fiat-Shamir

A dishonest Alice

We now turn to the security properties of the protocol when
“Alice” is dishonest, that is, when Mallory is attempting to
impersonate the real Alice.

Theorem
Suppose Mallory doesn’t know a square root of v−1. Then Bob’s
verification will fail with probability at least 1/2.
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Feige-Fiat-Shamir

Proof that Mallory can’t successfully cheat

Proof.
In order for Mallory to successfully fool Bob, he must come up
with x in step 1 and y in step 3 satisfying

x = y2vb mod n.

Mallory sends x in step 1 before Bob chooses b, so he does not
know which value of b to expect.

When Mallory receives b, he responds by sending a value yb to
Bob.

We consider two cases.
(continued. . . )
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Feige-Fiat-Shamir

Proof: case 1

Proof (continued).

Case 1: There is at least one b ∈ {0, 1} for which yb fails to satisfy

x = y2vb mod n.

Since b = 0 and b = 1 each occur with probability 1/2, this means
that Bob’s verification will fail with probability at least 1/2, as
desired.

(continued. . . )
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Feige-Fiat-Shamir

Proof: case 2

Proof (continued).

Case 2: y0 and y1 both satisfy the verification equation, so
x = y2

0 mod n and x = y2
1 v mod n.

We can solve these equations for v−1 to get

v−1 ≡ y2
1 x−1 ≡ y2

1 y−2
0 (mod n)

But then y1y−1
0 mod n is a square root of v−1.

Since Mallory was able to compute both y1 and y0, then he was
also able to compute a square root of v−1, contradicting the
assumption that he doesn’t “know” a square root of v−1.
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Feige-Fiat-Shamir

Successful cheating with probability 1/2

We remark that it is possible for Mallory to cheat with success
probability 1/2.

I He guesses the bit b that Bob will send him in step 2 and
generates a pair (x , y).

I If he guesses b = 0, then he chooses x = r2 mod n and
y = r mod n, just as Alice would have done.

I If he guesses b = 1, then he chooses y arbitrarily and
x = y2v mod n.

He proceeds to send x in step 1 and y in step 3.

The pair (x , y) is accepted by Bob Mallory’s guess of b turns out
to be correct, which will happen with probability 1/2.

CPSC 467, Lecture 16 44/48



Outline Euler criterion Finding sqrt QR crypto Authentication

Feige-Fiat-Shamir

A dishonest Bob

We now consider the case of a dishonest Mallory impersonating
Bob, or simply a dishonest Bob who wants to capture Alice’s
secret.

Alice would like assurance that her secret is protected if she follows
the protocol,regardless of what Mallory (Bob) does.

Consider what Mallory knows at the end of the protocol.
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Feige-Fiat-Shamir

Mallory sends b = 0

Suppose Mallory sends b = 0 in step 2.

Then he ends up with a pair (x , y), where y is a random number
and x is its square modulo n.

Neither of these numbers depend in any way on Alice secret s, so
Mallory gets no direct information about s.

It’s also of no conceivable use to Mallory in trying to find s by
other means, for he can compute such pairs by himself without
involving Alice.

If having such pairs would allow him find a square root of v−1,
then he was already able to compute square roots, contrary to the
assumption that finding square roots modulo n is difficult.
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Feige-Fiat-Shamir

Mallory sends b = 1
Suppose Mallory sends b = 1 in step 2.

Now he ends up with the pair (x , y), where x = r2 mod n and
y = rs mod n.

While y might seem to give information about s, observe that y
itself is just a random element of Zn. This is because r is random,
and the mapping r → rs mod n is one-to-one for all s ∈ Z∗

n.
Hence, as r ranges through all possible values, so does rs mod n.

What does Mallory learn from x?

Nothing that he could not have computed himself knowing y , for
x = y2v mod n.

Again, all he ends up with is a random number (y in this case) and
a quadratic residue x that he can compute knowing y .
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Feige-Fiat-Shamir

Mallory learns nothing from (x , y)

In both cases, Mallory ends up with information that he could have
computed without interacting with Alice.

Hence, if he could have discovered Alice’s secret by talking to
Alice, then he could have also done so on his own, contradicting
the hardness assumption for computing square roots.

This is the sense in which Alice’s protocol releases zero knowledge
about her secret.
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