
Outline Formalizing ZK Quadratic residues

CPSC 467: Cryptography and Computer Security

Michael J. Fischer

Lecture 18
November 4, 2013

CPSC 467, Lecture 18 1/28

Outline Formalizing ZK Quadratic residues

Formalizing Zero Knowledge
Computational Knowledge
Composing Zero-Knowledge Proofs

Quadratic Residues Revisited
The Legendre symbol
Jacobi symbol
Computing the Jacobi symbol

CPSC 467, Lecture 18 2/28

Outline Formalizing ZK Quadratic residues

Formalizing Zero Knowledge

CPSC 467, Lecture 18 3/28

Outline Formalizing ZK Quadratic residues

Computational Knowledge

Computational Knowledge

CPSC 467, Lecture 18 4/28

Outline Formalizing ZK Quadratic residues

Computational Knowledge

What does Bob learn from Alice?

We have seen several examples of zero knowledge proofs but no
careful definition of what it means to be “zero knowledge”.

The intuition that “Bob learns nothing from Alice” surely isn’t
true.

After running the FFS protocol, for example, Bob learns the
quadratic residue x that Alice computed in the first step.

He didn’t know x before, nor did he and Alice know any quadratic
residues in common other than the public number v .

By zero knowledge, we want to capture the notion that Bob learns
nothing that might be useful in turning an intractable computation
into a tractable one.

CPSC 467, Lecture 18 5/28

Outline Formalizing ZK Quadratic residues

Computational Knowledge

A general client process for interacting with Alice
Consider an arbitrary algorithm for performing some computation,
i.e., suppose Mallory is trying to compute some function f (z).

We regard Mallory as a probabilistic Turing machine with input
tape and output tape.

I z is placed on the input tape at the beginning.
I If Mallory halts, the contents of the output tape is the answer.
I Mallory can also play Bob’s role in some zero-knowledge

protocol, say FFS for definiteness.
I During the computation, Mallory can read the number x that

Alice sends at the start of FFS.
I Later, he can send a bit b to Alice.
I Later still, he can read the response y from Alice.
I After that, he computes and produces the answer, f (z).

CPSC 467, Lecture 18 6/28

Outline Formalizing ZK Quadratic residues

Computational Knowledge

A Mallory-simulator

A Mallory-simulator, whom we’ll call Sam, is a program like
Mallory except he is not on the internet and can’t talk to Alice.

Alice’s protocol is zero knowledge if for every Mallory, there is a
Mallory-simulator Sam that computes the same random function
f (z) as Mallory.

In other words, whatever Mallory does with the help of Alice, Sam
can do alone.

CPSC 467, Lecture 18 7/28

Outline Formalizing ZK Quadratic residues

Computational Knowledge

The logical connection with knowledge

If Mallory computes some function with Alice’s help (such as
writing a square root of v to the output tape), then Sam can also
do that without Alice’s help.

Under the assumption that taking square roots is hard, Sam
couldn’t do that; hence Mallory also couldn’t do that, even after
talking with Alice.

We conclude that Alice doesn’t release information that would help
Mallory to compute her secret; hence her secret is secure.

CPSC 467, Lecture 18 8/28

Outline Formalizing ZK Quadratic residues

Computational Knowledge

Constructing a simulator

To show a particular interactive protocol is zero knowledge, it is
necessary to show how to construct Sam for an arbitrary program
Mallory.

Here’s a sketch of how to generate a triple (x , b, y) for the FFS
protocol.

b = 0: Sam generates x and y the same way Alice does—by
taking x = r2 mod n and y = r mod n.

b = 1: Sam chooses y at random and computes
x = y2v mod n.

What he can’t do (without knowing Alice’s secret) is to generate
both triples for the same value x .

CPSC 467, Lecture 18 9/28

Outline Formalizing ZK Quadratic residues

Computational Knowledge

A simulator for FFS
Here’s the code for Sam:

1. Simulate Mallory until he requests a value from Alice.

2. Save Mallory’s state as Q.

3. Choose a random value b̂ ∈ {0, 1}.
4. Generate a valid random triple (x , b̂, y).

5. Pretend that Alice sent x to Mallory.

6. Continue simulating Mallory until he is about to send a value
b to Alice.

7. If b 6= b̂, reset Mallory to state Q and return to step 3.

8. Otherwise, continue simulating Mallory until he requests
another value from Alice. Pretend that Alice sent him y and
continue.

9. Continue simulating Mallory until he halts.

CPSC 467, Lecture 18 10/28

Outline Formalizing ZK Quadratic residues

Computational Knowledge

Properties of the simulator

The probability that b = b̂ in step 7 is 1/2; hence, the expected
number of times Sam executes lines 3–7 is only 2.

Sam outputs the same answers as Mallory with the same
probability distribution. Requires some work to show.

Hence, the FFS protocol is zero knowledge.

Note that this proof depends on Sam’s ability to generate triples of
both kinds without knowing Alice’s secret.

CPSC 467, Lecture 18 11/28

Outline Formalizing ZK Quadratic residues

Composing ZK

Composing Zero-Knowledge Proofs

CPSC 467, Lecture 18 12/28

Outline Formalizing ZK Quadratic residues

Composing ZK

Serial composition

One round of the simplified FFS protocol has probability 0.5 of
error. That is, an Alice-impostor can fool Bob half the time.

This is unacceptably high for most applications.

Repeating the protocol t times reduces error probability to 1/2t .

Taking t = 20, for example, reduces the probability of error to less
than on in a million.

The downside of such serial repetition is that it also requires t
round trip messages between Alice and Bob (plus a final message
from Alice to Bob).

CPSC 467, Lecture 18 13/28

Outline Formalizing ZK Quadratic residues

Composing ZK

Parallel composition of zero-knowledge proofs

One could run t executions of the protocol in parallel.

Let (xi , bi , yi) be the messages exchanged during the i th execution
of the simplified FFS protocol, 1 ≤ i ≤ t.

In a parallel execution,

I Alice sends (x1, . . . , xt) to Bob,

I Bob sends (b1, . . . , bt) to Alice,

I Alice sends (y1, . . . , yt) to Bob,

I Bob checks the t sets of values he has received and accepts
only if all checks pass.

CPSC 467, Lecture 18 14/28

Outline Formalizing ZK Quadratic residues

Composing ZK

Simulation proof does not extend to parallel execution

A parallel execution is certainly attractive in practice, for it reduces
the number of round-trip messages to only 11

2 .

The downside is that the resulting protocol may not be zero
knowledge by our definition.

Intuitively, the important difference is that Bob gets to know all of
the xi ’s before choosing the bi ’s.

CPSC 467, Lecture 18 15/28

Outline Formalizing ZK Quadratic residues

Composing ZK

Problem extending the simulator to the parallel case

While it seems implausible that this would actually help a cheating
Bob to compromise Alice secret, the simulation proof used to show
that a protocol is zero knowledge no longer works.

To extend the simulator construction to the parallel composition:

I First Sam would have to guess (b̂1, . . . b̂t).

I He would construct the xi ’s and yi ’s as before.

I When Mallory’s program reaches the point that Mallory
generates the bi ’s, the chance is very high that Sam’s initial
guesses were wrong and he will be forced to start over again.
Indeed, the probability that all t initial guesses are correct is
only 1/2t .

CPSC 467, Lecture 18 16/28

Outline Formalizing ZK Quadratic residues

Quadratic Residues Revisited

CPSC 467, Lecture 18 17/28

Outline Formalizing ZK Quadratic residues

Legendre

Legendre symbol
Let p be an odd prime, a an integer. The Legendre symbol

(
a
p

)
is

a number in {−1, 0,+1}, defined as follows:(
a

p

)
=


+1 if a is a non-trivial quadratic residue modulo p

0 if a ≡ 0 (mod p)
−1 if a is not a quadratic residue modulo p

By the Euler Criterion, we have

Theorem
Let p be an odd prime. Then(

a

p

)
≡ a(p−1

2) (mod p)

Note that this theorem holds even when p |a.

CPSC 467, Lecture 18 18/28

Outline Formalizing ZK Quadratic residues

Legendre

Properties of the Legendre symbol

The Legendre symbol satisfies the following multiplicative property:

Fact
Let p be an odd prime. Then(

a1a2
p

)
=

(
a1
p

) (
a2
p

)

Not surprisingly, if a1 and a2 are both non-trivial quadratic
residues, then so is a1a2. Hence, the fact holds when(

a1
p

)
=

(
a2
p

)
= 1.

CPSC 467, Lecture 18 19/28

Outline Formalizing ZK Quadratic residues

Legendre

Product of two non-residues

Suppose a1 6∈ QRp, a2 6∈ QRp. The above fact asserts that the
product a1a2 is a quadratic residue since(

a1a2
p

)
=

(
a1
p

) (
a2
p

)
= (−1)(−1) = 1.

Here’s why.

I Let g be a primitive root of p.

I Write a1 ≡ gk1 (mod p) and a2 ≡ gk2 (mod p).

I Both k1 and k2 are odd since a1, a2 6∈ QRp.

I But then k1 + k2 is even.

I Hence, g (k1+k2)/2 is a square root of a1a2 ≡ gk1+k2 (mod p),
so a1a2 is a quadratic residue.

CPSC 467, Lecture 18 20/28

Outline Formalizing ZK Quadratic residues

Jacobi

The Jacobi symbol
The Jacobi symbol extends the Legendre symbol to the case where
the “denominator” is an arbitrary odd positive number n.

Let n be an odd positive integer with prime factorization
∏k

i=1 pi
ei .

We define the Jacobi symbol by(a
n

)
=

k∏
i=1

(
a

pi

) ei

(1)

The symbol on the left is the Jacobi symbol, and the symbol on
the right is the Legendre symbol.

(By convention, this product is 1 when k = 0, so
(
a
1

)
= 1.)

The Jacobi symbol extends the Legendre symbol since the two
definitions coincide when n is an odd prime.

CPSC 467, Lecture 18 21/28

Outline Formalizing ZK Quadratic residues

Jacobi

Meaning of Jacobi symbol

What does the Jacobi symbol mean when n is not prime?

I If
(
a
n

)
= +1, a might or might not be a quadratic residue.

I If
(
a
n

)
= 0, then gcd(a, n) 6= 1.

I If
(
a
n

)
= −1 then a is definitely not a quadratic residue.

CPSC 467, Lecture 18 22/28

Outline Formalizing ZK Quadratic residues

Jacobi

Jacobi symbol = +1 for n = pq

Let n = pq for p, q distinct odd primes. Since(a
n

)
=

(
a

p

) (
a

q

)
(2)

there are two cases that result in
(
a
n

)
= 1:

1.
(

a
p

)
=
(

a
q

)
= +1, or

2.
(

a
p

)
=
(

a
q

)
= −1.

CPSC 467, Lecture 18 23/28

Outline Formalizing ZK Quadratic residues

Jacobi

Case of both Jacobi symbols = +1

If
(

a
p

)
=
(

a
q

)
= +1, then a ∈ QRp ∩QRq = Q11

n .

It follows by the Chinese Remainder Theorem that a ∈ QRn.

This fact was implicitly used in the proof sketch that |
√
a| = 4.

CPSC 467, Lecture 18 24/28

Outline Formalizing ZK Quadratic residues

Jacobi

Case of both Jacobi symbols = −1

If
(

a
p

)
=
(

a
q

)
= −1, then a ∈ QNRp ∩QNRq = Q00

n .

In this case, a is not a quadratic residue modulo n.

Such numbers a are sometimes called “pseudo-squares” since they
have Jacobi symbol 1 but are not quadratic residues.

CPSC 467, Lecture 18 25/28

Outline Formalizing ZK Quadratic residues

Identities

Computing the Jacobi symbol

The Jacobi symbol
(
a
n

)
is easily computed from its definition

(equation 1) and the Euler Criterion, given the factorization of n.

Similarly, gcd(u, v) is easily computed without resort to the
Euclidean algorithm given the factorizations of u and v .

The remarkable fact about the Euclidean algorithm is that it lets
us compute gcd(u, v) efficiently, without knowing the factors of u
and v .

A similar algorithm allows us to compute the Jacobi symbol
(
a
n

)
efficiently, without knowing the factorization of a or n.

CPSC 467, Lecture 18 26/28

Outline Formalizing ZK Quadratic residues

Identities

Identities involving the Jacobi symbol

The algorithm is based on identities satisfied by the Jacobi symbol:

1.
(
0
n

)
=

{
1 if n = 1
0 if n 6= 1;

2.
(
2
n

)
=

{
1 if n ≡ ±1 (mod 8)
−1 if n ≡ ±3 (mod 8);

3.
(
a1
n

)
=
(
a2
n

)
if a1 ≡ a2 (mod n);

4.
(
2a
n

)
=
(
2
n

)
·
(
a
n

)
;

5.
(
a
n

)
=

{ (
n
a

)
if a, n odd and ¬(a ≡ n ≡ 3 (mod 4))

−
(
n
a

)
if a, n odd and a ≡ n ≡ 3 (mod 4).

CPSC 467, Lecture 18 27/28

Outline Formalizing ZK Quadratic residues

Identities

A recursive algorithm for computing Jacobi symbol

/* Precondition: a, n >= 0; n is odd */

int jacobi(int a, int n) {

if (a == 0) /* identity 1 */

return (n==1) ? 1 : 0;

if (a == 2) /* identity 2 */

switch (n%8) {

case 1: case 7: return 1;

case 3: case 5: return -1;

}

if (a >= n) /* identity 3 */

return jacobi(a%n, n);

if (a%2 == 0) /* identity 4 */

return jacobi(2,n)*jacobi(a/2, n);

/* a is odd */ /* identity 5 */

return (a%4 == 3 && n%4 == 3) ? -jacobi(n,a) : jacobi(n,a);

}

CPSC 467, Lecture 18 28/28

	Formalizing Zero Knowledge
	Computational Knowledge
	Composing Zero-Knowledge Proofs

	Quadratic Residues Revisited
	The Legendre symbol
	Jacobi symbol
	Computing the Jacobi symbol

