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Bit Commitment Problem
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Bit guessing game

Alice and Bob want to play a guessing game over the internet.

Alice says,

“I’m thinking of a bit. If you guess my bit correctly, I’ll
give you $10. If you guess wrong, you give me $10.”

Bob says,

“Ok, I guess zero.”

Alice replies,

“Sorry, you lose. I was thinking of one.”
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Preventing Alice from changing her mind

While this game may seem fair on the surface, there is nothing to
prevent Alice from changing her mind after Bob makes his guess.

Even if Alice and Bob play the game face to face, they still must do
something to commit Alice to her bit before Bob makes his guess.

For example, Alice might be required to write her bit down on a
piece of paper and seal it in an envelope.

After Bob makes his guess, he opens the envelope to know
whether he won or lost.

Writing down the bit commits Alice to that bit, even though Bob
doesn’t learn its value until later.
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Bit commitment

A bit-commitment is an encryption of a bit using a cryptosystem
with a special property.

1. The bit is hidden from anyone not knowing the secret key.

2. There is only one valid way of decrypting the ciphertext, no
matter what key is used.

Thus, if c = Ek(b):

I It is hard to find b from c without knowning k .

I For every k ′, b′, if Ek ′(b′) = c , then b = b′.
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Bit commitment intuition

In other words,

I If Alice produces a commitment c to a bit b, then b cannot
be recovered from c without knowing Alice’s secret encoding
key k .

I There is no key k ′ that Alice might release that would make it
appear that c is a commitment of the bit 1− b.
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Bit-commitments as cryptographic envelopes

More formally, a bit commitment or blob or cryptographic envelope
is an electronic analog of a sealed envelope.

Intuitively, a blob has two properties:

1. The bit inside the blob remains hidden until the blob is
opened.

2. The bit inside the blob cannot be changed, that is, blob
cannot be opened in different ways to reveal different bits.
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Bit-commitment primitives

A blob is produced by a protocol commit(b) between Alice and
Bob. We assume initially that only Alice knows b.

At the end of the commit protocol, Bob has a blob c containing
Alice’s bit b, but he should have no information about b’s value.

Later, Alice and Bob can run a protocol open(c) to reveal the bit
contained in c to Bob.
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Requirements for bit commitment

Alice and Bob do not trust each other, so each wants protection
from cheating by the other.

I Alice wants to be sure that Bob cannot learn b after she runs
commit(b), even if he cheats.

I Bob wants to be sure that all successful runs of open(c)
reveal the same bit b′, no matter what Alice does.

We do not require that Alice tell the truth about her private bit b.
A dishonest Alice can always pretend her bit was b′ 6= b when
producing c . But if she does, c can only be opened to b′, not to b.

These ideas should become clearer in the protocols below.
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From crypto

Bit Commitment Using Symmetric

Cryptography
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From crypto

A näıve approach to building a bit-commitment scheme

A näıve way to use a symmetric cryptosystem for bit commitment
is for Alice to encrypt b with a private key k to get blob c = Ek(b).

She opens it by releasing k . Anyone can compute b = Dk(c).

Alice can easily cheat if she can find a colliding triple (c, k0, k1)
with the property that Dk0(c) = 0 and Dk1(c) = 1.

She “commits” by sending c to Bob.

Later, she can choose to send Bob either k0 or k1.

This isn’t just a hypothetical problem. Suppose Alice uses the
most secure cryptosystem of all, a one-time pad, so Dk(c) = c ⊕ k .

Then (c, c ⊕ 0, c ⊕ 1) is a colliding triple.
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From crypto

Another attempt
The protocol below tries to make it harder for Alice to cheat by
making it possible for Bob to detect most bad keys.

Alice Bob

To commit(b):

1.
r←− Choose random string r .

2. Choose random key k.

Compute c = Ek(r · b).
c−→ c is commitment.

To open(c):

3. Send k .
k−→ Let r ′ · b′ = Dk(c).

Check r ′ = r .
b′ is revealed bit.
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From crypto

Security of second attempt

For many cryptosystems (e.g., DES), this protocol does indeed
prevent Alice from cheating, for she will have difficulty finding any
two keys k0 and k1 such that Ek0(r · 0) = Ek1(r · 1), and r is
different for each run of the protocol.

However, for the one-time pad, she can cheat as before: She just
takes c to be random and lets k0 = c ⊕ (r · 0) and k1 = c ⊕ (r · 1).

Then Dkb(c) = r · b for b ∈ {0, 1}, so the revealed bit is 0 or 1
depending on whether Alice sends k0 or k1 in step 3.
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From crypto

Need for a different approach

We see that not all secure cryptosystems have the properties we
need in order to make the protocol secure.

We need a property analogous to the strong collision-free property
for hash functions (Lecture 14).
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From hash

Bit Commitment Using Hash Functions
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From hash

Bit commitment from a hash function
The analogy between bit commitment and hash functions described
above suggests a bit commitment scheme based on hash functions.

Alice Bob

To commit(b):
1.

r1←− Choose random string r1.
2. Choose random string r2.

Compute c = H(r1r2b).
c−→ c is commitment.

To open(c):

3. Send r2.
r2−→ Find b′ ∈ {0, 1} such that

c = H(r1r2b
′).

If no such b′, then fail.
Otherwise, b′ is revealed bit.
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From hash

Purpose of r2

The purpose of r2 is to protect Alice’s secret bit b.

To find b before Alice opens the commitment, Bob would have to
find r ′2 and b′ such that H(r1r

′
2b
′) = c .

This is akin to the problem of inverting H and is likely to be hard,
although the one-way property for H is not strong enough to imply
this.

On the one hand, if Bob succeeds in finding such r ′2 and b′, he has
indeed inverted H, but he does so only with the help of r1 —
information that is not generally available when attempting to
invert H.
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From hash

Purpose of r1

The purpose of r1 is to strengthen the protection that Bob gets
from the hash properties of H.

Even without r1, the strong collision-free property of H would
imply that Alice cannot find c , r2, and r ′2 such that
H(r20) = c = H(r ′21).

But by using r1, Alice would have to find a new colliding pair for
each run of the protocol.

This protects Bob by preventing Alice from exploiting a few
colliding pairs for H that she might happen to discover.
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From PRSG

Bit Commitment Using Pseudorandom

Sequence Generators
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From PRSG

Bit commitment using a PRSG
Let Gρ(s) be the first ρ bits of G (s). (ρ is a security parameter.)

Alice Bob

To commit(b):
1.

r←− Choose random r ∈ {0, 1}ρ.
2. Choose random seed s.

Let y = Gρ(s).
If b = 0 let c = y .

If b = 1 let c = y ⊕ r .
c−→ c is commitment.

To open(c):

3. Send s.
s−→ Let y = Gρ(s).

If c = y then reveal 0.
If c = y ⊕ r then reveal 1.
Otherwise, fail.
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From PRSG

Security of PRSG bit commitment

Assuming G is cryptographically strong, then c will look random to
Bob, regardless of the value of b, so he will be unable to get any
information about b.

Why?Assume Bob has advantage ε at guessing b when he can choose r
and is given c . Here’s a judge J for distinguishing G (S) from U.

I Given input y , J chooses random b and simulates Bob’s
cheating algorithm. J simulates Bob choosing r , computes
c = y ⊕ rb, and continues Bob’s algorithm to find a guess b̂
for b.

I If b̂ = b, J outputs 1.

I If b̂ 6= b, J outputs 0.
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From PRSG

The judge’s advantage

If y is drawn at random from U, then c is uniformly distributed
and independent of b, so J outputs 1 with probability 1/2.

If y comes from G (S), then J outputs 1 with the same probability
that Bob can correctly guess b.

Assuming G is cryptographically strong, then Bob has negligible
advantage at guessing b.
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From PRSG

Purpose of r

The purpose of r is to protect Bob against a cheating Alice.

Alice can cheat if she can find a triple (c, s0, s1) such that s0 opens
c to reveal 0 and s1 opens c to reveal 1.

Such a triple must satisfy the following pair of equations:

c = Gρ(s0)
c = Gρ(s1)⊕ r .

}
It is sufficient for her to solve the equation

r = Gρ(s0)⊕ Gρ(s1)

for s0 and s1 and then choose c = Gρ(s0).
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From PRSG

How big does ρ need to be?
We now count the number of values of r for which the equation

r = Gρ(s0)⊕ Gρ(s1)
has a solution.

Suppose n is the seed length, so the number of seeds is ≤ 2n.
Then the right side of the equation can assume at most 22n/2
distinct values.

Among the 2ρ possible values for r , only 22n−1 of them have the
possibility of a colliding triple, regardless of whether or not Alice
can feasibly find it.

Hence, by choosing ρ sufficiently much larger than 2n − 1, the
probability of Alice cheating can be made arbitrarily small.

For example, if ρ = 2n + 19 then her probability of successful
cheating is at most 2−20.
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From PRSG

Why does Bob need to choose r?

Why can’t Alice choose r , or why can’t r be fixed to some
constant?

If Alice chooses r , then she can easily solve r = Gρ(s0)⊕ Gρ(s1)
and cheat.

If r is fixed to a constant, then if Alice ever finds a colliding triple
(c , s0, s1), she can fool Bob every time.

While finding such a pair would be difficult if Gρ were a truly
random function, any specific PRSG might have special properties,
at least for a few seeds, that would make this possible.
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From PRSG

Example

For example, suppose r = 1ρ and Gρ(¬s0) = ¬Gρ(s0) for some s0.

Then taking s1 = ¬s0 gives
Gρ(s0)⊕Gρ(s1) = Gρ(s0)⊕Gρ(¬s0) = Gρ(s0)⊕¬Gρ(s0) = 1ρ = r .

By having Bob choose r at random, r will be different each time
(with very high probability).

A successful cheating Alice would be forced to solve
r = Gρ(s0)⊕ Gρ(s1) in general, not just for one special case.
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Formalization of Bit Commitment Schemes
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Formalization of bit commitment schemes

The above bit commitment protocols all have the same form.

We abstract from them a cryptographic primitive, called a bit
commitment scheme, which consists of a pair of key spaces KA
and KB, a blob space B, a commitment function

enclose : KA ×KB × {0, 1} → B,

and an opening function

reveal : KA ×KB × B → {0, 1, φ},

where φ means “failure”.

We say that a blob c ∈ B contains b ∈ {0, 1} if
reveal(kA, kB , c) = b for some kA ∈ KA and kB ∈ KB .
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Desired properties

These functions have three properties:

1. ∀kA ∈ KA, ∀kB ∈ KB ,∀b ∈ {0, 1},
reveal(kA, kB , enclose(kA, kB , b)) = b;

2. ∀kB ∈ KB ,∀c ∈ B,∃b ∈ {0, 1},∀kA ∈ KA,
reveal(kA, kB , c) ∈ {b, φ}.

3. No feasible probabilistic algorithm that attempts to distinguish
blobs containing 0 from those containing 1, given kB and c, is
correct with probability significantly greater than 1/2.
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Intuition

The intention is that kA is chosen by Alice and kB by Bob.
Intuitively, these conditions say:

1. Any bit b can be committed using any key pair kA, kB , and
the same key pair will open the blob to reveal b.

2. For each kB , all kA that successfully open c reveal the same
bit.

3. Without knowing kA, the blob does not reveal any significant
amount of information about the bit it contains, even when
kB is known.
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Comparison with symmetric cryptosystem

A bit commitment scheme looks a lot like a symmetric
cryptosystem, with enclose(kA, kB , b) playing the role of the
encryption function and reveal(kA, kB , c) the role of the
decryption function.

However, they differ both in their properties and in the
environments in which they are used.

Conventional cryptosystems do not require uniqueness condition 2,
nor do they necessarily satisfy it.

CPSC 467, Lecture 21 32/74



Outline Bit commitment Formalization Non-isomorphism Coin-Flipping Locked Box

Comparison with symmetric cryptosystem (cont.)

In a conventional cryptosystem, we assume that Alice and Bob
trust each other and both share a secret key k.

The cryptosystem is designed to protect Alice’s secret message
from a passive eavesdropper Eve.

In a bit commitment scheme, Alice and Bob cooperate in the
protocol but do not trust each other to choose the key.

Rather, the key is split into two pieces, kA and kB , with each
participant controlling one piece.

CPSC 467, Lecture 21 33/74



Outline Bit commitment Formalization Non-isomorphism Coin-Flipping Locked Box

A bit-commitment protocol from a bit-commitment scheme
A bit commitment scheme can be turned into a bit commitment
protocol by plugging it into the generic protocol:

Alice Bob

To commit(b):

1.
kB←− Choose random kB ∈ KB .

2. Choose random kA ∈ KA.

c = enclose(kA, kB , b).
c−→ c is commitment.

To open(c):

3. Send kA.
kA−→ Compute b = reveal(kA, kB , c).

If b = φ, then fail.
If b 6= φ, then b is revealed bit.
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The previous bit commitment protocols we have presented can all
be regarded as instances of the generic protocol.

For example, we get the second protocol based on symmetric
cryptography by taking

enclose(kA, kB , b) = EkA(kB · b),

and

reveal(kA, kB , c) =

{
b if kB · b = DkA(c)
φ otherwise.
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Interactive Proof of Graph Non-Isomorphism
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Other kinds of interactive proofs

Not all interactive proofs follow this simple (x , b, y) pattern.

Suppose Alice wants to prove to Bob that G0 and G1 are
non-isomorphic graphs.

Even ignoring questions of Alice’s privacy, there is no obvious data
that she can send Bob that will allow him to easily verify that the
two graphs are not isomorphic.

However, under a different set of assumptions, Alice can convince
Bob that they can’t be isomorphic, even though Bob can’t do so
by himself.
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An all-powerful teacher

In this version of interactive proof, we assume that Alice is
all-powerful and can compute intractable problems. In particular,
given two graphs, she can determine whether or not they are
isomorphic.

Bob on the other hand has no extraordinary powers and can just
perform computation in the usual way.

Alice uses her computational powers to distinguish isomorphic
copies of G0 from isomorphic copies of G1. If G0

∼= G1, there is no
way she could do this, since any graph H isomorphic to one of
them is also isomorphic to the other.

So by convincing Bob that she is able to reliably distinguish such
graphs, she also convinces him that G0 6∼= G1.
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Interactive proof of graph non-isomorphism

Alice Bob

1. Choose random b ∈ {0, 1}.
Compute a random isomor-
phic copy H of Gb.

H←−
2. If H ∼= G0 let b′ = 0.

If H ∼= G1 let b′ = 1.
b′−→ Check b′ = b.

¡
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Graph non-isomorphism IP is not zero-knowledge

Alice performs a computation for Bob that he could not do himself.

Namely, Alice willingly tells Bob for any H of his choosing whether
it is isomorphic to G0 or to G1.

(In any implementation of the protocol, she also probably tells him
if H is not isomorphic to either one, perhaps by failing in step 2
when b′ is undefined.)
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Bit Commitment in Graph Non-Isomorphism IP

Bit Commitment in Graph

Non-Isomorphism IP
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Bit Commitment in Graph Non-Isomorphism IP

Non-isomorphism protocol viewed as bit commitment

In the non-isomorphism IP, H is a commitment of Bob’s bit b.

Suppose Bob gives H to Carol (who doesn’t have Alice’s
extraordinary computational powers).

Later Bob could convince Carol of his bit by telling her the
isomorphism that proves H ∼= Gb.

But there is nothing he could do to make her believe that his bit
was really 1− b since H 6∼= G1−b.

The actual protocol doesn’t use the commitment in quite this way.
Rather than having Bob later reveal his bit, Alice uses her special
powers to discover the bit committed by H.

CPSC 467, Lecture 21 42/74



Outline Bit commitment Formalization Non-isomorphism Coin-Flipping Locked Box

Coin-Flipping
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Flipping a common coin

Alice and Bob are in the process of getting divorced and are trying
to decide who gets custody of their pet cat, Fluffy.

They both want the cat, so they agree to decide by flipping a coin:
heads Alice wins; tails Bob wins.

Bob has already moved out and does not wish to be in the same
room with Alice.

The feeling is mutual, so Alice proposes that she flip the coin and
telephone Bob with the result.

This proposal of course is not acceptable to Bob since he has no
way of knowing whether Alice is telling the truth when she says
that the coin landed heads.
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Making it fair

“Look Alice,” he says, “to be fair, we both have to be involved in
flipping the coin.”

“We’ll each flip a private coin and XOR our two coins together to
determine who gets Fluffy.”

“You should be happy with this arrangement since even if you
don’t trust me to flip fairly, your own fair coin is sufficient to
ensure that the XOR is unbiased.”
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A proposed protocol
This sounds reasonable to Alice, so she lets him propose the
protocol below, where 1 means “heads” and 0 means “tails”.

Alice Bob

1. Choose random bit

bA ∈ {0, 1}
bA−→.

2. Choose random bit
bB←− bB ∈ {0, 1}.

3. Coin outcome is Coin outcome is
b = bA ⊕ bB . b = bA ⊕ bB .

Alice considers this for awhile, then objects.

“This isn’t fair. You get to see my coin before I see yours,
so now you have complete control over the outcome.”

CPSC 467, Lecture 21 46/74



Outline Bit commitment Formalization Non-isomorphism Coin-Flipping Locked Box

Alice’s counter proposal

She suggests that she would be happy if the first two steps were
reversed, so that Bob flips his coin first, but Bob balks at that
suggestion.

They then both remember the beginning of today’s lecture and
decide to use blobs to prevent either party from controlling the
outcome. They agree on the following protocol.
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A mutually acceptable protocol
Alice Bob

1. Choose random kA, sA ∈ KA.
kA, kb←−−→ Choose random kB , sB ∈ KB .

2. Choose random bit bA ∈ {0, 1}. Choose random bit bB ∈ {0, 1}.
cA = enclose(sA, kB , bA).

cA, cB←−−→ cB = enclose(sB , kA, bB).

3. Send sA.
sA, sB←−−→ Send sB .

4. bB = reveal(sB , kA, cB). bA = reveal(sA, kB , cA).
Coin outcome is b = bA ⊕ bB . Coin outcome is b = bA ⊕ bB .

At the completion of step 2, both Alice and Bob have each others
commitment (something they failed to achieve in the past, which is
why they’re in the middle of a divorce now), but neither knows the
other’s private bit.

They learn each other’s bit at the completion of steps 3 and 4.
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Remaining asymmetry

While this protocol appears to be completely symmetric, it really
isn’t quite, for one of the parties completes step 3 before the other
one does.

Say Alice receives sB before sending sA.

At that point, she can compute bB and hence know the coin
outcome b.

If it turns out that she lost, she might decide to stop the protocol
and refuse to complete her part of step 3.

CPSC 467, Lecture 21 49/74



Outline Bit commitment Formalization Non-isomorphism Coin-Flipping Locked Box

Premature termination

What happens if one party quits in the middle or detects the other
party cheating?

So far, we’ve only considered the possibility of undetected cheating.

But in any real situation, one party might feel that he or she
stands to gain by cheating, even if the cheating is detected.
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Responses to cheating

Detected cheating raises complicated questions as to what happens
next.

I Does a third party Carol become involved?

I If so, can Bob prove to Carol that Alice cheated?

I What if Alice refuses to talk to Carol?

Think about Bob’s recourse in similar real-life situations and
consider the reasons why such situations rarely arise.

For example, what happens if someone

I fails to follow the provisions of a contract?

I ignores a summons to appear in court?
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A copycat attack

There is a subtle problem with the previous coin-flipping protocol.

Suppose Bob sends his message before Alice sends hers in each of
steps 1, 2, and 3.

Then Alice can choose kA = kB , cA = cB , and sA = sB rather than
following her proper protocol, so

reveal(sA, kB , cA) = reveal(sB , kA, cB).

In step 4, Bob will compute bA = bB and won’t detect that
anything is wrong. The coin outcome is b = bA ⊕ bA = 0.

Hence, Alice can force outcome 0 simply by playing copycat.
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Preventing a copycat attack
This problem is not so easy to overcome.

One possibility is for both Alice and Bob to check that kA 6= kB
after step 1.

That way, if Alice, say, chooses cA = cB = c and sA = sB = s on
steps 2 and 3, there still might be a good chance that

bA = reveal(s, kB , c) 6= reveal(s, kA, c) = bB .

However, depending on the bit commitment scheme, a difference
in only one bit in kA and kB might not be enough to ensure that
different bits are revealed.

In any case, it’s not enough that bA and bB sometimes differ.
For the outcome to be unbiased, we need Pr[bA 6= bB] = 1/2.
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A better idea

A better idea might be to both check that kA 6= kB after step 1 and
then to use h(kA) and h(kB) in place of kA and kB , respectively, in
the remainder of the protocol, where h is a hash function.

That way, even a single bit difference in kA and kB is likely to be
magnified to a large difference in the strings h(kA) and h(kB).

This should lead to the bits reveal(sA, h(kB), cA) and
reveal(sB , h(kA), cB) being uncorrelated, even if sA = sB and
cA = cB .
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Locked Box Paradigm
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Overview

Overview

Protocols for coin flipping and for dealing a poker hand from a
deck of cards can be based on the intuitive notion of locked boxes.

This idea in turn can be implemented using commutative-key
cryptosystems.

We first present a coin-flipping protocol using locked boxes.
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Application

Preparing the boxes

Imagine two sturdy boxes with hinged lids that can be locked with
a padlock.

Alice writes “heads” on a slip of paper and “tails” on another.

“heads”, signed Alice “tails”, signed Alice

She places one of these slips in each box.
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Application

Alice locks the boxes

Alice puts a padlock on each box for which she holds the only key.

A A

She then gives both locked boxes to Bob, in some random order.
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Application

Bob adds his lock

Bob cannot open the boxes and does not know which box contains
“heads” and which contains “tails”.

He chooses one of the boxes and locks it with his own padlock, for
which he has the only key.

A A B

He gives the doubly-locked box back to Alice.
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Application

Alice removes her lock

Alice gets

A B

She removes her lock.

B

and returns the box to Bob.
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Application

Bob opens the box
Bob gets

B

He removes his lock

opens the box, and removes the slip of paper from inside.

“heads”, signed Alice

He gives the slip to Alice.
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Application

Alice checks that Bob didn’t cheat

At this point, both Alice and Bob know the outcome of the coin
toss.

Alice verifies that the slip of paper is one of the two that she
prepared at the beginning, with her handwriting on it.

She sends her key to Bob.
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Application

Bob check that Alice didn’t cheat
Bob still has the other box.

A

He removes Alice’s lock,

opens the box, and removes the slip of paper from inside.

“tails”, signed Alice

He checks that it contains the other coin value.
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Implementation

Implementation
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Implementation

Commutative-key cryptosystems

Alice and Bob can carry out this protocol electronically using any
commutative-key cryptosystem, that is, one in which
EA ◦ EB = EB ◦ EA.1

RSA is commutative for keys A and B with a common modulus n,
so we can use RSA in an unconventional way.

Rather than making the encryption exponent public and keeping
the factorization of n private, we turn things around.

1Recall the related notion of “commutative cryptosystem” of Lecture 12 in
which the encryption and decryption functions for the same key commuted.
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Implementation

RSA as a commutative-key cryptosystem

Alice and Bob jointly chose primes p and q, and both compute
n = pq.

Alice chooses an RSA key pair A = ((eA, n), (dA, n)), which she
can do since she knows the factorization of n.

Similarly, Bob chooses an RSA key pair B = ((eB , n), (dB , n))
using the same n.

Alice and Bob both keep their key pairs private (until the end of
the protocol, when they reveal them to each other to verify that
there was no cheating).
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Implementation

Security remark

We note that this scheme may have completely different security
properties from usual RSA.

In RSA, there are three different secrets involved with the key: the
factorization of n, the encryption exponent e, and the decryption
exponent d .

We have seen previously that knowing n and any two of these
three pieces of information allows the third to be reconstructed.

Thus, knowing the factorization of n and e lets one compute d .
We also showed in Lecture 10 how to factor n given both e and d .

The way RSA is usually used, only e is public, and it is believed to
be hard to find the other two secrets.
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Implementation

A new use for RSA

Here we propose making the factorization of n public but keeping e
and d private.

It may indeed be hard to find e and d , even knowing the
factorization of n, but if it is, that fact is not going to follow from
the difficulty of factoring n.

Of course, for security, we need more than just that it is hard to
find e and d .

We also need it to be hard to find m given c = me mod n.

This is reminiscent of the discrete log problem, but of course n is
not prime in this case.
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Implementation

Coin-flipping using commutative-key cryptosystems

We now implement the locked box protocol using RSA.

Here we assume that Alice and Bob initially know large primes p
and q.

In step (2), Alice chooses a random number r such that
r < (n − 1)/2.

This ensures that m0 and m1 are both in Zn.

Note that i and r can be efficiently recovered from mi since i is
just the low-order bit of mi and r = (mi − i)/2.
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Implementation

Alice Bob

1. Choose RSA key pair A with mod-
ulus n = pq.

Choose RSA key pair B with
modulus n = pq.

2. Choose random r ∈ Z(n−1)/2.
Let mi = 2r + i , for i ∈ {0, 1}.
Let ci = EA(mi ) for i ∈ {0, 1}.
Let C = {c0, c1}.

C−→ Choose ca ∈ C .

3.
cab←− Let cab = EB(ca).

4. Let cb = DA(cab).
cb−→

5. Let m = DB(cb).
Let i = m mod 2.
Let r = (m − i)/2.
If i = 0 then “tails”.
If i = 1 then “heads”.

B←−
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Implementation

Alice Bob

6. Let m = DB(cb).
Check m ∈ {m0,m1}.
If m = m0 then “tails”.
If m = m1 then “heads”.

A−→

7. Let c ′a = C − {ca}.
Let m′ = DA(c ′a).
Let i ′ = m′ mod 2.
Let r ′ = (m′ − i ′)/2.
Check i ′ 6= i and r ′ = r .
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Implementation

Correctness when Alice and Bob are honest

When both Alice and Bob are honest, Bob computes
cab = EB(EA(mj)) for some j ∈ {0, 1}.

In step 4, Alice computes cb.
By the commutativity of EA and EB ,

cb = DA(EB(EA(mj))) = EB(mj).

Hence, in step 5, m = mj is one of Alice’s strings from step 2.
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Implementation

A dishonest Bob
A dishonest Bob can control the outcome of the coin toss if he can
find two keys B and B ′ such that EB(ca) = EB′(c ′a), where
C = {ca, c ′a} is the set received from Alice in step 2.

In this case, cab = EB(EA(mj)) = EB′(EA(m1−j)) for some j . Then
in step 4, cb = DA(cab) = EB(mj) = EB′(m1−j).

Hence, mj = DB(cb) and m1−j = DB′(cb), so Bob can obtain both
of Alice’s messages and then send B or B ′ in step 5 to force the
outcome to be as he pleases.

To find such B and B ′, Bob would need to solve the equation

cea ≡ c ′a
e′

(mod n)

for e and e ′. Not clear how to do this, even knowing the
factorization of n.
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Implementation

Card dealing using locked boxes

The same locked box paradigm can be used for dealing a 5-card
poker hand from a deck of cards.

Alice takes a deck of cards, places each card in a separate box, and
locks each box with her lock.

She arranges the boxes in random order and ships them off to Bob.

Bob picks five boxes, locks each with his lock, and send them back.

Alice removes her locks from those five boxes and returns them to
Bob.

Bob unlocks them and obtains the five cards of his poker hand.

Further details are left to the reader.
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