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Locked-box protocol revisited

In the locked box coin-flipping protocol, Alice has two messages
m0 and m1.

Bob gets one of them.

Alice doesn’t know which (until Bob tells her).

Bob can’t cheat to get both messages.

Alice can’t cheat to learn which message Bob got.

The oblivious transfer problem abstracts these properties from
particular applications such as coin flipping and card dealing,
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1-OT

Oblivious Transfer of One Secret
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1-OT

Oblivious transfer of one secret

Alice has a secret s.

An oblivious transfer protocol has two equally-likely outcomes:

1. Bob learns s.

2. Bob learns nothing.

Afterwards, Alice doesn’t know whether or not Bob learned s.

A cheating Bob can do nothing to increase his chance of getting s.

A cheating Alice can do nothing to learn whether or not Bob got
her secret.

Rabin proposed an oblivious transfer protocol based on quadratic
residuosity in the early 1980’s.
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1-OT

Rabin’s OT protocol

Alice Bob

1. Secret s.
n = pq, p 6= q prime.
RSA public key (e, n).
Compute c = E(e,n)(s).

(e,n,c)−→
2. Choose random x ∈ Z∗n.

a←− Compute a = x2 mod n.

3. Check a ∈ QRn.

Random y ∈
√
a (mod n).

y−→
4. Check y2 ≡ a (mod n).

If y 6≡ ±x (mod n), use x , y to
factor n and decrypt c to ob-
tain s.
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1-OT

Analysis

Alice can can carry out step 3 since she knows the factorization of
n and can find all four square roots of a.

However, Alice has no idea which x Bob used to generate a.

Hence, with probability 1/2, y ≡ ±x (mod n) and with probability
1/2, y 6≡ ±x (mod n).

If y 6≡ ±x (mod n), then the two factors of n are gcd(x − y , n)
and n/ gcd(x − y , n), so Bob factors n and decrypts c in step 4.

However, if y ≡ ±x (mod n), Bob learns nothing, and Alice’s
secret is as secure as RSA itself.
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1-OT

A potential problem

There is a potential problem with this protocol.

A cheating Bob in step 2 might send a number a which he
generated by some means other than squaring a random x .

In this case, he always learns something new no matter which
square root Alice sends him in step 3.

Perhaps that information, together with what he already learned in
the course of generating a, is enough for him to factor n.
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1-OT

Is this a real problem?

We don’t know of any method by which Bob can find a quadratic
residue a (mod n) without also knowing one of a’s square roots.

We certainly don’t know of any method that would produce a
quadratic residue a together with some other information Ξ that,
combined with a square root y , would allow Bob to factor n.

But we also cannot prove that no such method exists.
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1-OT

A modified protocol
We fix this problem by having Bob prove that he knows a square
root of the number a that he sends Alice in step 2.

He does this using a zero knowledge proof of knowledge of a
square root of a.

This is essentially what the simplified Feige-Fiat-Shamir protocol of
Lecture 16 does, but with the roles of Alice and Bob reversed.

I Bob claims to know a square root x of the public number a.

I He wants to prove to Alice that he knows x , but he does not
want Alice to get any information about x .

I If Alice were to learn x , then she could choose y = x and
eliminate Bob’s chance of learning s while still appearing to
play honestly.
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1-of-2 OT

Oblivious Transfer of One Secret out of Two
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1-of-2 OT

One-of-two oblivious transfer

In one-of-two oblivious transfer, Alice has two secrets, s0 and s1.

Bob always gets exactly one of the secrets, each with probability
1/2.

Alice does not know which one Bob gets.

The locked box protocol is one way to implement one-of-two
oblivious transfer.

Another is based on a public key cryptosystem (such as RSA) and
a symmetric cryptosystem (such as AES).

This protocol given next does not rely on the cryptosystems being
commutative.
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1-of-2 OT

Intuitive idea

In this protocol, Alice chooses two PKS key pairs and sends the
public keys to Bob.

Bob chooses a random key k for a symmetric cryptosystem,
encrypts it with one of Alice’s two keys chosen at random, and
sends the ciphertext to Alice.

Alice decrypts Bob’s ciphertext using both of her decryption keys
and obtains two numbers {k0, k1}. One of them is Bob’s k ; the
other is garbage. She encrypts one secret using k0 and one using
k1 and sends to Bob.

Bob decrypts the one that was encrypted with k.
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1-of-2 OT

A one-of-two OT protocol

Alice Bob

1. Secrets s0 and s1.
Choose two PKS key pairs
(e0, d0) and (e1, d1).

e0,e1−→

2. Choose random key k for sym-
metric cryptosystem (Ê , D̂).
Choose random b ∈ {0, 1}.

c←− Compute c = Eeb(k).

3. Let ki = Ddi (c), i ∈ {0, 1}.
Choose b′ ∈ {0, 1}.
Let ci = Êki (si⊕b′), i ∈ {0, 1}. c0,c1−→

4. Output s = sb⊕b′ = D̂k(cb).
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1-of-2 OT

Analysis

In step 2, Bob encrypts a randomly chosen key k for the symmetric
cryptosystem using one of the PKS encryption keys that Alice sent
him in step 1.

He then selects one of the two encryption keys from Alice, uses it
to encrypt k , and sends the encryption to Alice.

In step 3, Alice decrypts c using both decryption keys d0 and d1 to
get k0 and k1.

One of the ki is Bob’s key k (kb to be specific) and the other is
garbage, but because k is random and she doesn’t know b, she
can’t tell which is k.
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1-of-2 OT

Analysis (cont.)

She then encrypts one secret with k0 and the other with k1, using
the random bit b′ to ensure that each secret is equally likely to be
encrypted by the key that Bob knows.

In step 4, Bob decrypts the ciphertext cb using key his key k = kb
to recover the secret s = sb⊕b′ .

He can’t decrypt the other ciphertext c1⊕b since he doesn’t know
the key k1⊕b used to produce it, nor does he know the decryption
key d1⊕b that would allow him to find it from c.
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1-of-2 OT

A subtle security problem

Unfortunately, this protocol has a subtle security problem. We
claimed that Alice doesn’t know Bob’s value b after step 2. But
why should that be true?

c is the encryption of k using Ee0 or Ee1 . We would need to know
that outputs of Ee0(k) for random k are indistinguishable from
outputs of Ee1(k). We have no grounds for believing that.

For example, we could take our favorite PKS and construct a new
one where E ′e(k) = e · Ee(k). This is just as secure as the original
since e is already known to the adversary. However, the ciphertext
here reveals the public key used for encryption.
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1-of-2 OT

Another 1-of-2 OT protocol using blinding 1

Alice Bob

1. Secrets s0 and s1.
Choose RSA key (n, e, d).
Let yi = Ee(si ), i ∈ {0, 1}. n,e,y0,y1−→

2. Choose random b ∈ {0, 1}.
Choose random r ∈ Z∗n.

c←− Compute c = ybEe(r) mod n.

3. Let c ′ = Dd(c) ≡ sbr (mod n).
c′−→

4. Output c ′r−1 mod n = sb.

1This protocol is adapted from notes by David Wagner, U.C. Berkeley, CS276,
lecture 29, May 2006.
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1-of-2 OT

Analysis

This protocol is much simpler.

I In step 1, Alice sends Bob encryptions of both secrets.

I In step 2, Bob chooses one of Alice’s encryptions, blinds it,
and returns the result to Alice.

I In step 3, Alice decrypts whatever Bob sends her, which
allows Bob to unblind the decryption and recover the secret
he chose in step 2.

Alice’s other secret is safe assuming semi-honest parties (see
lecture 20) as long as RSA is secure under a limited chosen
ciphertext attack (since that is what Alice permits in step 3).

Bob’s blinding prevents Alice from knowing which secret he
learned.
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Privacy-Preserving Multiparty Computation
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Privacy

We have looked at many protocols whose goal is to keep Alice’s
information secret from an adversary, or sometimes even from Bob
himself.

We now look at other protocols whose goal is to control the release
of information about Alice’s secret. Just enough information should
be released to carry out the purpose of the protocol but no more.

This will become clearer with an example.
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The Millionaire’s Problem
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The Millionaire’s Problem

Alice and Bob want to know who is the richer without revealing
how much they are actually worth.

Alice is worth I million dollars; Bob is worth J million dollars.

They want to determine whether or not I ≥ J, but at the end of
the protocol, neither should have learned any more about the other
person’s wealth than is implied by the truth value of the predicate
I ≥ J.
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Privacy-preserving multiparty computation

The Millionaire’s problem, introduced by Andy Yao in 1982, began
the study of privacy-preserving multiparty computation.

Another example is vote-counting.

Each voter has an input vi ∈ {0, 1} indicating their no/yes vote on
an issue.

The goal is to collectively compute
∑

vi while maintaining the
privacy of the individual vi .
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A solution to Yao’s problem

For simplicity, assume that I , J ∈ {1, 2, . . . , 10}.

Let N be a security parameter, and assume that Alice has public
and private RSA keys (e, n) and (d , n), respectively, where n = p̄q̄,
and |p̄| ≈ |q̄| ≈ N

2 .

A protocol that intuitively works is shown on the next slide.2

2Adapted from web page “Solution to the Millionaire’s Problem”.
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The protocol
Alice Bob

1. Choose x of length N.
Let C = E(e,n)(x).

m←− Let m = (C − J + 1) mod n.

2a. Yi = D(d,n)(m + i − 1),
i ∈ [1, 10].
[Note: YJ = x . ]

2b. Choose prime p of length N/2 s.t.
|Zi − Zj | ≥ 2 for i 6= j , where
Zi = (Yi mod p), i ∈ [1, 10].

2c. Let Wi = (Zi + (i > I )) mod p,

i ∈ [1, 10].
p,W1,...,W10−→

3.
result←− result = (WJ ≡ x (mod p)).
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Verbal description

Alice decrypts m,m + 1, . . . ,m + 9 to get Y1, . . . ,Y10.

YJ is Bob’s secret, x , but Alice doesn’t know which it is since all
of the Yi ’s “look” random.

She reduces them all mod random prime p to get Z1, . . . ,Z10.
Note that ZJ = x mod p and the other Zi ’s look random.

Finally, she adds 1 (modp) to each of the numbers Zi for which i
is greater than her own wealth I . If she adds 1 to ZJ , this means
that J > I ; if not J ≤ I .

Bob can tell which is the case from the numbers that Alice sends
him in step 2c. Namely, if WJ ≡ x (mod p), this means that 1
was not added, so I ≥ J. Otherwise, I < J.
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Detailed description
Alice Bob

1. Choose x of length N.
Let C = E(e,n)(x).

m←− Let m = (C − J + 1) mod n.
2a. Yi = D(d,n)(m + i − 1),

i ∈ [1, 10].
[Note: YJ = x . ]

C = (m + J − 1) mod n encrypts Bob’s random secret x .

The numbers in M = {m mod n, . . . , (m + 9) mod n} are
“random-looking,” and all are possible ciphertexts. Why?

Alice knows that C ∈M but doesn’t know which element it is.

After decryption, she knows that some Yi = x but not which one.
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Detailed description (cont.)

Alice Bob

2b. Choose prime p of length N/2 s.t.
|Zi − Zj | ≥ 2 for i 6= j , where
Zi = (Yi mod p), i ∈ [1, 10].

The numbers in Y = {Y1, . . . ,Y10} have no particular pattern.
In all likelihood, no pair are at all close together.

Similarly, for most choices of p, no pair of Zj ’s will be close.
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Detailed description (cont.)

Alice Bob

2c. Let Wi = (Zi + (i > I )) mod p,

i ∈ [1, 10].
p,W1,...,W10−→

3.
result←− result = (WJ ≡ x (mod p)).

The Wi ’s are distinct and separated by at least 2, so j is the
unique i such that (Wi − x) mod p ∈ {0, 1}. I don’t know why
this uniqueness condition is needed. Perhaps the intention is that
Alice shuffle the Wi before sending.

Since YJ = x , then ZJ ≡ x (mod p).

Hence, if WJ ≡ x (mod p), then J ≤ I , otherwise J > I .
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Privacy
Clearly, all that Alice learns from Bob is a set of random-looking
numbers m, . . . ,m + 9, one of which corresponds to Bob’s wealth
J, but she has no way of telling which, since any number in Z∗n is
the RSA encryption of some plaintext message.

Bob on the other hand receives p and W1, . . . ,W10 from Alice in
step 2. However, he does not know any Zi for i 6= J since he
cannot decrypt the corresponding numbers m + i − 1.

He also cannot recover Yi from Wi because of the information loss
implicit in the “mod p” operation. Thus, he also learns nothing
about Alice’s wealth I except for the value of the predicate I ≥ J.

We remark that this protocol works only in the semi-honest model
in which both Alice and Bob follow their protocol, but both will try
to infer whatever they can about the others secrets after the fact.
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A General Security Model
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How can we define multiparty security?

How to define security in a multiparty protocol is far from obvious.

For example, in the millionaire’s problem, there is no way to
prevent either Alice or Bob from lying about their wealth, nor is it
possible to prevent either of them from voluntarily giving up
secrecy by broadcasting their wealth.

Thus, we can’t hope to find a protocol that will prevent all kinds of
cheating.
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Ideal versus real protocol security model

What we do instead is to compare a given “real” protocol with a
corresponding very simple “ideal” protocol involving a trusted third
party.

The real protocol should simulate the ideal protocol, much the
same as the simulator of a zero knowledge proof system simulates
the real interaction between prover and verifier.

The real protocol is deemed to be secure if any bad things that can
happen in the real protocol are also possible in the ideal protocol.
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Example of an ideal protocol

The ideal protocol for the millionaire’s problem has just two steps:

I Step 1: Alice and Bob send their secrets I and J, respectively,
to the trusted party across a private, secure channel.

I Step 2: the trusted party computes the value of the predicate
I ≥ J and sends the result back to both Alice and Bob.

The goal of the real protocol is that Alice and Bob don’t learn any
more than they could learn in the ideal protocol.
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What does an ideal protocol compute?
What does an ideal multiparty protocol compute? Suppose there
are m parties to the protocol, P1, . . . ,Pm.

Each Pi has a private input xi and receives a private output yi .

We say that F is a (multiparty) functionality if F is a random
process that maps m inputs to m outputs.

As a special case, we say that F is deterministic if the m outputs
are uniquely determined by the m inputs.

The millionaire’s problem can be expressed succinctly as the
problem of securely computing the (deterministic) functionality

F (I , J) = ((I ≥ J), (I ≥ J))

in the semi-honest model.
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Simple application of oblivious transfer

Consider the problem of privately evaluating a Boolean function
f (x , y), where x is private to Alice and y is private to Bob. This
corresponds to privately computing the functionality

F (x , y) = (f (x , y), f (x , y)).

We use a slight variant of the one-out-of-two secrets oblivious
transfer protocol presented last time:

In OT2
1, the secrets are numbered s0 and s1. Bob requests and

gets the secret of his choice, but Alice does not learn which secret
he got.

This can be generalized to the case k secrets, where OTk
1 lets Bob

choose one out of k.
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The protocol

Here’s the protocol.

1. Alice, with private input x ∈ {0, 1}, prepares a table T :

y f (x , y)

0 f (x , 0)
1 f (x , 1)

She doesn’t know y , but she does know that the correct value
f (x , y) is in her table. It’s either f (x , 0) or f (x , 1).

2. Bob, with private input y , obtains line y of the table using
OT2

1. Bob outputs f (x , y) without learning x .

3. Bob sends f (x , y) to Alice, who also outputs it.
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Remarks

While this functionality seems almost too trivial to be interesting,
it’s really not.

For example, if f (x , y) = x ∧ y and Alice knows x = 0, then the
answer f (x , y) does not tell her Bob’s value y , so it’s important
that the protocol also not leak y in this case.

Similarly, when Bob requests the value corresponding to row 0, he
gets no information about x when the result f (x , 0) = 0 comes
back.

(In fact he knew that already before getting row 0 from Alice.)

CPSC 467, Lecture 22 40/45



Outline Oblivious Transfer Multiparty Millionaire’s problem Security model Privacy-preserving computation

Privacy-preserving Boolean Function

Evaluation
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Boolean functions computed by circuits
Let z̄ = f (x̄ , ȳ), where x̄ , ȳ , and z̄ are bit strings of lengths nx , ny ,
and nz , respectively, and f is a Boolean function computed by a
polynomial size Boolean circuit Cf with nx + ny input wires and nz
output wires.

In a private evaluation of Cf , Alice furnishes the (private) input
data to the first nx input wires, and Bob furnishes the (private)
input data for the remaining ny input wires. The nz output wires
should contain the result z̄ = f (x̄ , ȳ). The corresponding
functionality is

F (x̄ , ȳ) = (z̄ , z̄).

Alice and Bob should learn nothing about each others inputs or the
intermediate values of the circuit, other than what is implied by
their own inputs and the output values z̄ .
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Circuit evaluation

An evaluation of a circuit assigns a Boolean value σw to each wire
of the circuit. The input wires are assigned the corresponding
input values.

Let G be a gate with input wires u and v and output wire w that
computes the Boolean function g(x , y). In a correct assignment,
σw = g(σu, σv ).

A complete evaluation of the circuit first assigns values to the
input wires and then works its way down the circuit, assigning a
value to the output wire of any gate whose inputs have already
received values.
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A Boolean circuit

AND

OR

XNOR

Alice

Bob

σ1

σ2

σ3

σ4

σ5

σ6

σ7
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Private circuit evaluation

In a private circuit evaluation,

I Both Alice and Bob learn the output values of the circuit;

I Neither Alice nor Bob gain any information about each others
private input values except for whatever is implied by their
own input values and the circuit output.

We present two different schemes for privately evaluating a circuit:

I Value shares;

I Garbled circuits.
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