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Choosing a cryptosystem

Image credit: Derived from image by Frank Kagan Gürkaynak,
http://www.iis.ee.ethz.ch/~kgf/acacia/fig/alice_bob.png

What cryptosystem should I use?

Desired features:

I Easy to use.

I Keeps Alice’s message secure.

I Hard for Eve to break.
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An analogy—choosing a car

Image credit:
http://creativeracingcars.

yolasite.com/resources/wp_Racing_

Mustang_1280x800.jpg

What car should I buy?
Desired features:

I Fast.
I Safe.
I Economical.
I Fun to drive.
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Quantifying computational difficulty

Traditionally, cryptography was based on intuitive notions.

Recall the computational requirements for a symmetric
cryptosystem:

Feasibility E and D, regarded as functions of two arguments,
should be computable using a feasible amount of
time and storage.

Security (weak) It should be difficult to find m given c = Ek(m)
without knowing k .

Goal: Quantify these notions.
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Some important questions

1. What is an acceptable amount of time for computing E
and D and on what computers?

2. What does it mean to “find” m?
I Always?
I Sometimes?
I All bits of m?
I Only some bits?
I Some predicate of m, e.g., is m the message “I love you”?

3. What a priori knowledge does Eve have about m and k?

4. How can we choose k that is “unknown” to Eve?
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Modern Cryptography

The goal of Modern Cryptography is to replace intuitive notions of
security with mathematically precise, provable statements.

Goldwasser and Bellare follow the modern approach. We will look
there for a careful treatment of the approach I will sketch here.
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Giving precise answers to security questions

We next look at techniques for making precise statements about

1. Computational complexity.

2. Data confidentiality.

3. Knowledge of adversary.

4. Randomness.
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Complexity

Measuring computational difficulty

We want a notion of how much time is required to carry out a
computational task.

Why not use actual running time?

I It depends on the speed of the computer as well as on the
algorithm for computing the function.

I It varies from one input to another.

I It is difficult to analyze at a fine grained level of detail.
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Complexity

Role of complexity theory

Complexity theory allows one to make meaningful statements
about the asymptotic difficulty of computational problems,
independent of the particular computer or programming language.

Complexity measures rate of growth of worst-case running time as
a function of the length n of the inputs.

An algorithm runs in time T (n) if its running time on all but
finitely many inputs x is at most T (|x |).

An algorithm runs in polynomial time if it runs in time p(n) for
some polynomial function p(n).

A function f is polynomial time if it is computable by some
polynomial time algorithm.
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Complexity

Feasibility

The computational complexity of a cryptosystem measures how the
time to encrypt and decrypt grows as a function of an underlying
security parameter n.

Polynomial time functions are said to be feasible.

Feasibility is a minimal requirement.

In practice, we care about the actual run time for fixed values of
the security parameter (such as n = 512).
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Confidentiality

Keeping data confidential

A naive claim of security: It is impossible for Eve to find the key.

This definition is both too strong and too weak.

Too strong We can’t always prevent Eve from obtaining k .

I She can guess the key at random and will
sometimes be right.

I She can try all possible keys, given enough time.

Too weak The goal of a cryptosystem is to keep m confidential.
A system in which Eve can decrypt Alice’s messages
is totally insecure, whether or not she learns the key.
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Confidentiality

A more nuanced approach

Some compromises of decreasing difficulty for Eve:

Complete break Eve can find the key k.

I Can read all messages between Alice and Bob.
I Can send encrypted messages to Bob.

Complete message recovery Eve can decrypt all messages m.

I Can read all messages between Alice and Bob.
I Cannot encrypt her own messages to fool Bob.

Selected message recovery Eve can decrypt some subset M ⊆M
of messages. The larger M is, the more serious the
compromise.
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Confidentiality

Attacks that do not always succeed

Eve does not always have to succeed to do damage.

Weak keys Eve can decrypt messages encrypted with keys from
some subset K ⊆ K of “weak” keys.
The larger K is, the more serious the compromise.

Uncertain message recovery Eve can narrow down the possible
plaintexts but is uncertain about the actual message.

Probabilistic algorithms Eve’s attack may only succeed with some
small probability.

Partial information Eve can discover some information about m.
Example: In many cryptosystems, she always learns
the length of m.

What kinds of compromise are acceptable?
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Attacks

Eve’s information

Until now, we’ve implicitly assumed that Eve knows nothing about
the cryptosystem except for the ciphertext c .

In practice, Eve might know much more.

I She probably knows (or has a good idea) of the message
distribution.

I She might have obtained several other ciphertexts.

I She might have learned the decryptions of earlier ciphertexts.

I She might have even chosen the earlier messages or
ciphertexts herself.

This leads us to consider several attack scenarios.
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Attacks

Attack scenarios

Ciphertext-only attack Eve knows only c and tries to recover m.

Known plaintext attack Eve knows c and a sequence of
plaintext-ciphertext pairs (m1, c1), . . . , (mr , cr ) where
c 6∈ {c1, . . . , cr}. She tries to recover m.
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Attacks

Known plaintext attacks

A known plaintext attack can occur when

1. Alice uses the same key to encrypt several messages;

2. Eve later learns or successfully guesses the corresponding
plaintexts.

Some ways that Eve learns plaintexts.

I The plaintext might be publicly revealed at a later time, e.g.,
sealed bid auctions.

I The plaintext might be guessable, e.g., an email header.

I Eve might later discover the decrypted message on Bob’s
computer.
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Attacks

Chosen text attack scenarios

Still stronger attack scenarios allow Eve to choose one element of
a plaintext-ciphertext pair and obtain the other.

Chosen plaintext attack Like a known plaintext attack, except that
Eve chooses messages m1, . . . ,mr before getting c
and Alice (or Bob) encrypts them for her.

Chosen ciphertext attack Like a known plaintext attack, except
that Eve chooses ciphertexts c1, . . . , cr before getting
c and Alice (or Bob) decrypts them for her.

Mixed chosen plaintext/chosen ciphertext attack Eve chooses
some plaintexts and some ciphertexts and gets the
corresponding decryptions or encryptions.
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Attacks

Why would Alice cooperate in a chosen plaintext attack?

I Eve might be authorized to generate messages that are then
encrypted and sent to Bob, but she isn’t authorized to read
other people’s messages.1

I Alice might be an internet server, not a person, that encrypts
messages received in the course of carrying out a more
complicated cryptographic protocol.2

I Eve might gain access to Alice’s computer, perhaps only for a
short time, when Alice steps away from her desk.

1Nothing we have said implies that Eve is unknown to Alice and Bob or that
she isn’t also a legitimate participant in the protocol.

2We will see such protocols later in the course.
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Attacks

Adaptive chosen text attack scenarios

Adaptive versions of chosen text protocols are when Eve chooses
her texts one at a time after learning the response to her previous
text.

Adaptive chosen plaintext attack Eve chooses the messages
m1, m2, . . . one at a time rather than all at once.
Thus, m2 depends on (m1, c1), m3 depends on both
(m1, c1) and (m2, c2), etc.

Adaptive chosen ciphertext and adaptive mixed attacks are
defined similarly.
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Randomness

Randomness in cryptography

Where do we assume randomness?

1. The message is drawn at random from some arbitrary
probability distribution over the message space M which is
part of Eve’s a priori knowledge.

2. The secret key is chosen uniformly at random from the key
space K.

3. Eve has access to a source of randomness which she may use
while attempting to break the system. For example, Eve can
choose an element k ′ ∈ K at random. With probability
p = 1/|K|, her element k ′ is actually the correct key k.
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Randomness

Independence

The three sources of randomness are assumed to be statistically
independent.

Eve’s random numbers do not depend on (nor give any information
about) the message or key used by Alice.

Alice’s key does not depend on the particular message or vice versa.
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Randomness

Joint probability distribution

These multiple sources of randomness give rise to a joint
probability distribution that assigns a well-defined probability to
each triple (m, k , z), where m is a message, k a key, and z is the
result of the random choices Eve makes during her computation.

The independence assumption implies that

Pr[m, k, z] = Pr[m]× Pr[k]× Pr[z]

where

I Pr[m] is the probability that m is the chosen message,

I Pr[k] is the probability that k is the chosen key,

I Pr[z] is the probability that z represents Eve’s random choices.
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Randomness

Eve’s success probability

The joint distribution gives rise to an overall success probability for
Eve (once we decide on what it means for an attack to succeed).

We want Eve’s success probability to be “small”.

Here, “small” is measured relative to a security parameter n, which
you can think of as the key length.

Definition
A function f is negligible if for every polynomial p(·) there exists
an N such that for all integers n > N it holds that f (n) < 1

p(n) .

We require that the success probability be a negligible function of
the security parameter.
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Randomness

Computational security

Putting this all together, we get a general notion of computational
security.

Definition
A cryptosystem is computationally secure relative to a notion of
compromise if, for all probabilistic polynomial-time algorithms A,
when given as input the security parameter n and all of the
information available to Eve, the algorithm succeeds in
compromising the cryptosystem with success probability that is
negligible in n.
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Randomness

Practical security considerations

In practice, the important tradeoff is between the amount of time
that Alice and Bob are willing to spend to use the cryptosystem
versus what a determined adversary might be willing to spend to
break the system.

Asymptotic complexity results will not tell us how to set the
security parameter for a system, but they may inform us about how
much security improvement we can expect as the key length
increases.
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Probability Theory

CPSC 467b, Lecture 2 28/33



Outline Security of Symmetric Cryptography Probability Theory

Probability distributions and events

We give a quick overview of probability theory.

A discrete probability distribution p assigns a real number
pω ∈ [0, 1] to each element ω of a probability space Ω such that∑

ω∈Ω

pω = 1.

An event E is a subset of Ω. The probability of E is

Pr[E] =
∑
ω∈E

pω.
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Random variables

A random variable is a function X : Ω→ X , where X is a set.

We think of X as describing a random choice according to
distribution p.

Let x ∈ X . Event X = x means that the outcome of choice X is x .

Formally, the event X = x is the set {ω ∈ Ω | X (ω) = x}.
Its probability is therefore

Pr[x = X] =
∑

ω:X(ω)=x

pω.

We sometimes ambiguously write x to denote the event X = x .
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Experiments

Sometimes m denotes the random variable that describes the
experiment of Alice choosing a message m ∈M according to the
assumed message distribution.

Other times, m denotes a particular message in set M.

Hopefully, which meaning is intended will be clear from context.
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Conditional probability

Let E and F be events and assume Pr[F] 6= 0. The conditional
probability of E given F is defined by

Pr[E|F] = Pr[E ∩ F]/Pr[F].

Intuitively, it is the probability that E holds given that F is known
to hold.

Example: Ω p

1 .2
2 .2
3 .3
4 .1
5 .2

E = {1, 2, 3}, F = {2, 3, 4}.
Pr[E] = .7
Pr[F] = .6
Pr[E ∩ F] = .5
Pr[E|F] = .2/.6 + .3/.6 = 5/6.
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Statistical independence

Formally, events E and F are statistically independent if
Pr[E|F] = Pr[E].

An equivalent definition is that Pr[E ∩ F] = Pr[E] · Pr[F].

This is easily seen by dividing both sides by Pr[F] and applying the
definition of Pr[E|F].
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