
Outline Enigma Stream from PRSG Stream from block

CPSC 467b: Cryptography and Computer
Security

Michael J. Fischer

Lecture 6
January 31, 2013

CPSC 467b, Lecture 6 1/24



Outline Enigma Stream from PRSG Stream from block

Enigma machine exhibit

Building stream cipher from PRSG

Building stream cipher from block cipher
Byte padding
Chaining modes

CPSC 467b, Lecture 6 2/24



Outline Enigma Stream from PRSG Stream from block

Enigma machine exhibit

CPSC 467b, Lecture 6 3/24



Outline Enigma Stream from PRSG Stream from block

Enigma exhibit

Col. Robert W. Sadowski from the U. S. Military Academy at West
Point provided the class with the rare opportunity to see a real
German Enigma machine up close and to hear about its use during
World War II.

We give our heartfelt thanks to Col. Sadowski for his fascinating
presentation and for bringing the machine for us to see.

CPSC 467b, Lecture 6 4/24



Outline Enigma Stream from PRSG Stream from block

Enigma exhibit day

Col. Robert Sadowski (center left), Prof. Michael Fischer (center right), and CPSC
467/567 class surrounding Enigma machine (center) and register from Eniac computer
(foreground).

CPSC 467b, Lecture 6 5/24



Outline Enigma Stream from PRSG Stream from block

Building stream cipher from PRSG

CPSC 467b, Lecture 6 6/24



Outline Enigma Stream from PRSG Stream from block

Structure of stream cipher

A stream cipher can be built from two components:

1. a cipher that is used to encrypt a given character;

2. a keystream generator that produces a different key to be
used for each successive letter.

A commonly-used cipher is the simple XOR cryptosystem, also
used in the one-time pad.

Rather than using a long random string for the keystream, we
instead use a pseudorandom keystream generated on the fly using
a state machine.

Like a one-time pad, a different master key (seed) must be used for
each message; otherwise the system is easily broken.

CPSC 467b, Lecture 6 7/24



Outline Enigma Stream from PRSG Stream from block

Pseudorandom sequence generator (PRSG)

A pseudoramdom sequence generator (PRSG) consists of:

1. a seed (or master key),

2. a state,

3. a next-state generator,

4. an output function.

The initial state is derived from the seed.

At each stage, the state is updated and the output function is
applied to the state to obtain the next component of the output
stream.

CPSC 467b, Lecture 6 8/24



Outline Enigma Stream from PRSG Stream from block

Security requirements

I The output of the PRSG must “look” random.

I Any regularities in the output of the PRSG give an attacker
information about the plaintext.

I A known plaintext-ciphertext pair (m, c) gives the attacker a
sample output sequence from the PRSG (namely, m ⊕ c .)

I If the attacker is able to figure out the internal state, then she
will be able to predict all future outputs of the generator and
decipher the remainder of the ciphertext.

A pseudorandom sequence generator that resists all feasible
attempts to predict future outputs, even knowing a sequence of
past outputs, is said to be cryptographically strong.

CPSC 467b, Lecture 6 9/24



Outline Enigma Stream from PRSG Stream from block

Cryptographically strong PRSGs

Commonly-used linear congruential pseudorandom number
generators typically found in software libraries are quite insecure.

After observing a relatively short sequence of outputs, one can
solve for the state and correctly predict all future outputs.

Notes:

I The Linux random() is non-linear and hence much better, though
still not cryptographically strong.

I We will return to pseudorandom number generation later in this
course.

I See Goldwasser & Bellare Chapter 3 for an in-depth discussion of
this topic.

CPSC 467b, Lecture 6 10/24



Outline Enigma Stream from PRSG Stream from block

Ideas for improving stream ciphers

As with one-time pads, the same keystream must not be used more
than once.

A possible improvement: Make the next state depend on the
current plaintext or ciphertext characters.

Then the generated keystreams will diverge on different messages,
even if the key is the same.

Serious drawback: One bad ciphertext character will render the
rest of the message undecipherable.

CPSC 467b, Lecture 6 11/24



Outline Enigma Stream from PRSG Stream from block

Building stream cipher from block cipher

CPSC 467b, Lecture 6 12/24



Outline Enigma Stream from PRSG Stream from block

Recall: Difference between block and stream ciphers

A block cipher cannot be used directly as a stream cipher.

I A stream cipher must output the current ciphertext byte
before reading the next plaintext byte.

I A block cipher waits to output the current ciphertext block
until a block’s worth of message bytes have been accumulated.

We first return to the problem of using a block cipher to encrypt a
sequence of blocks in an on-line fashion and then extend those
ideas to become a true stream cipher.

CPSC 467b, Lecture 6 13/24



Outline Enigma Stream from PRSG Stream from block

Byte padding

Padding revisited

Lecture 4 presented a method of bit padding to turn an abtirary bit
string into one whose length is a multiple of the block length.

Often the underlying message consists of a sequence of bytes, and
a block comprises some number b of bytes.

This enables byte padding methods to be used, some of which are
very simple.

CPSC 467b, Lecture 6 14/24

http://zoo.cs.yale.edu/classes/cs467/2013s/lectures/ln04.pdf


Outline Enigma Stream from PRSG Stream from block

Byte padding

PKCS7 padding

PKCS7 #7 is a message syntax described in internet RFC 2315.
It’s padding rule is to fill a partially filled last block having k
“holes” with k bytes, each having the value k when regarded as a
binary number.

For example, if the last block is 3 bytes short of being full, then
the last 3 bytes are set to the values 03 03 03.

On decoding, if the last block of the message does not have this
form, then a decoding error is indicated.

Example: The last block cannot validly end in . . . 25 00 03.

CPSC 467b, Lecture 6 15/24



Outline Enigma Stream from PRSG Stream from block

Chaining modes

Chaining mode

A chaining mode tells how to encrypt a sequence of plaintext
blocks m1, m2, . . . ,mt to produce a corresponding sequence of
ciphertext blocks c1, c2, . . . , ct , and conversely, how to recover the
mi ’s given the ci ’s.

CPSC 467b, Lecture 6 16/24



Outline Enigma Stream from PRSG Stream from block

Chaining modes

Electronic Codebook Mode (ECB)

Each block is encrypted separately.

I To encrypt, Alice computes ci = Ek(mi ) for each i .

I To decrypt, Bob computes mi = Dk(ci ) for each i .

This is in effect a monoalphabetic cipher, where the “alphabet” is
the set of all possible blocks and the permutation is Ek .

CPSC 467b, Lecture 6 17/24



Outline Enigma Stream from PRSG Stream from block

Chaining modes

Cipher Block Chaining Mode (CBC)

Prevents identical plaintext blocks from having identical
ciphertexts.

I To encrypt, Alice applies Ek to the XOR of the current
plaintext block with the previous ciphertext block.
That is, ci = Ek(mi ⊕ ci−1).

I To decrypt, Bob computes mi = Dk(ci )⊕ ci−1.

To get started, we take c0 = IV, where IV is a fixed initialization
vector which we assume is publicly known.

CPSC 467b, Lecture 6 18/24



Outline Enigma Stream from PRSG Stream from block

Chaining modes

Output Feedback Mode (OFB)

Similar to a one-time pad, but keystream is generated from Ek .

I To encrypt, Alice repeatedly applies the encryption function to
an initial vector (IV) k0 to produce a stream of block keys
k1, k2, . . ., where ki = Ek(ki−1).

The block keys are XORed with successive plaintext blocks.
That is, ci = mi ⊕ ki .

I To decrypt, Bob applies exactly the same method to the
ciphertext to get the plaintext.
That is, mi = ci ⊕ ki , where ki = Ek(ki−1) and k0 = IV .

CPSC 467b, Lecture 6 19/24



Outline Enigma Stream from PRSG Stream from block

Chaining modes

Cipher-Feedback Mode (CFB)

Similar to OFB, but keystream depends on previous messages as
well as on Ek .

I To encrypt, Alice computes the XOR of the current plaintext
block with the encryption of the previous ciphertext block.
That is, ci = mi ⊕ Ek(ci−1).
Again, c0 is a fixed initialization vector.

I To decrypt, Bob computes mi = ci ⊕ Ek(ci−1).

Note that Bob is able to decrypt without using the block
decryption function Dk . In fact, it is not even necessary for Ek to
be a one-to-one function (but using a non one-to-one function
might weaken security).

CPSC 467b, Lecture 6 20/24



Outline Enigma Stream from PRSG Stream from block

Chaining modes

OFB, CFB, and stream ciphers

Both CFB and OFB are closely related to stream ciphers.
In both cases, ci is mi XORed with some function of data that
came before stage i .

Like a one-time pad, OFB is insecure if the same key is ever
reused, for the sequence of ki ’s generated will be the same.
If m and m′ are encrypted using the same key k , then
m ⊕m′ = c ⊕ c ′.

CFB avoids this problem, for even if the same key k is used for two
different message sequences mi and m′i , it is only true that
mi ⊕m′i = ci ⊕ c ′i ⊕ Ek(ci−1)⊕ Ek(c ′i−1), and the dependency on k
does not drop out.

CPSC 467b, Lecture 6 21/24



Outline Enigma Stream from PRSG Stream from block

Chaining modes

Propagating Cipher-Block Chaining Mode (PCBC)

Here is a more complicated chaining rule that nonetheless can be
deciphered.

I To encrypt, Alice XORs the current plaintext block, previous
plaintext block, and previous ciphertext block.
That is, ci = Ek(mi ⊕mi−1 ⊕ ci−1). Here, both m0 and c0 are
fixed initialization vectors.

I To decrypt, Bob computes mi = Dk(ci )⊕mi−1 ⊕ ci−1.

CPSC 467b, Lecture 6 22/24



Outline Enigma Stream from PRSG Stream from block

Chaining modes

Recovery from data corruption

In real applications, a ciphertext block might be damaged or lost.
An interesting property is how much plaintext is lost as a result.

I With ECB and OFB, if Bob receives a bad block ci , then he
cannot recover the corresponding mi , but all good ciphertext
blocks can be decrypted.

I With CBC and CFB, Bob needs both good ci and ci−1 blocks
in order to decrypt mi . Therefore, a bad block ci renders both
mi and mi+1 unreadable.

I With PCBC, bad block ci renders mj unreadable for all j ≥ i .

Error-correcting codes applied to the ciphertext may be better
solutions in practice since they minimize lost data and give better
indications of when irrecoverable data loss has occurred.

CPSC 467b, Lecture 6 23/24



Outline Enigma Stream from PRSG Stream from block

Chaining modes

Other modes

Other modes can easily be invented.

In all cases, ci is computed by some expression (which may depend
on i) built from Ek() and ⊕ applied to available information:

I ciphertext blocks c1, . . . , ci−1,

I message blocks m1, . . . ,mi ,

I any initialization vectors.

Any such equation that can be “solved” for mi (by possibly using
Dk() to invert Ek()) is a suitable chaining mode in the sense that
Alice can produce the ciphertext and Bob can decrypt it.

Of course, the resulting security properties depend heavily on the
particular expression chosen.

CPSC 467b, Lecture 6 24/24


	Outline
	Enigma machine exhibit
	Building stream cipher from PRSG
	Building stream cipher from block cipher
	Byte padding
	Chaining modes


