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Stream cipher from block cipher
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Review of OFB and CFB chaining modes

Output Feedback Mode (OFB)

Similar to a one-time pad, but keystream is generated from the
previous block keys using Ek .

I To encrypt, Alice computes a stream of block keys k1, k2, . . .,
where ki = Ek(ki−1) and k0 is a fixed initial vector (IV).

The block keys are XORed with successive plaintext blocks.
That is, ci = mi ⊕ ki .

I To decrypt, Bob applies exactly the same method to the
ciphertext to get the plaintext.
That is, mi = ci ⊕ ki , where ki = Ek(ki−1) and k0 = IV .

CPSC 467b, Lecture 7 4/45



Outline Stream from block Attacks Steganography Public-key RSA Number theory

Review of OFB and CFB chaining modes

Cipher-Feedback Mode (CFB)

Similar to OFB, but keystream is generated from the previous
cipher text blocks using Ek .

I To encrypt, Alice computes a stream of block keys k1, k2, . . .,
where ki = Ek(ci−1) and c0 is a fixed initial vector (IV).

The block keys are XORed with successive plaintext blocks,
just as in OFB.
That is, ci = mi ⊕ ki .

I To decrypt, Bob applies exactly the same method to the
ciphertext to get the plaintext.
That is, ci = mi ⊕ ki , where ki = Ek(ci−1) and c0 = IV .
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Extending chaining modes to bytes

Stream ciphers from OFB and CFB block ciphers

OFB and CFB block modes can be turned into stream ciphers.

Both compute ci = mi ⊕ ki , where

I ki = Ek(ki−1) (for OFB);

I ki = Ek(ci−1) (for CFB).

Assume a block size of b bytes numbered 0, . . . , b − 1.

Then ci ,j = mi ,j ⊕ ki ,j , so each output byte ci ,j can be computed
before knowing mi ,j ′ for j ′ > j ; no need to wait for all of mi .

One must keep track of j . When j = b, the current block is
finished, i must be incremented, j must be reset to 0, and ki+1

must be computed.
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Extending chaining modes to bytes

Extended OFB and CFB modes

Simpler (for hardware implementation) and more uniform stream
ciphers result by also computing ki a byte at a time.

The idea: Use a shift register X to accumulate the feedback bits
from previous stages of encryption so that the full-sized blocks
needed by the block chaining method are available.

X is initialized to some public initialization vector.
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Extending chaining modes to bytes

Some notation

Assume block size b = 16 bytes.

Define two operations: L and R on blocks:

I L(x) is the leftmost byte of x ;

I R(x) is the rightmost b − 1 bytes of x .
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Extending chaining modes to bytes

Extended OFB and CFB similarities

The extended versions of OFB and CFB are very similar.

Both maintain a one-block shift register X .

The shift register value Xs at stage s depends only on c1, . . . , cs−1

(which are now single bytes) and the master key k .

At stage i , Alice

I computes Xs according to Extended OFB or Extended CFB
rules;

I computes byte key ks = L(Ek(Xs));

I encrypts message byte ms as cs = ms ⊕ ks .

Bob decrypts similarly.
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Extending chaining modes to bytes

Shift register rules

The two modes differ in how they update the shift register.

Extended OFB mode
Xs = R(Xs−1) · ks−1

Extended CFB mode
Xs = R(Xs−1) · cs−1

(‘·’ denotes concatenation.)

Summary:

I Extended OFB keeps the most recent b key bytes in X .

I Extended CFB keeps the most recent b ciphertext bytes in X ,
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Extending chaining modes to bytes

Comparison of extended OFB and CFB modes

The differences seem minor, but they have profound implications
on the resulting cryptosystem.

I In eOFB mode, Xs depends only on s and the master key k
(and the initialization vector IV), so loss of a ciphertext byte
causes loss of only the corresponding plaintext byte.

I In eCFB mode, loss of ciphertext byte cs causes ms and all
succeeding message bytes to become undecipherable until cs

is shifted off the end of X . Thus, b message bytes are lost.
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Extending chaining modes to bytes

Downside of extended OFB

The downside of eOFB is that security is lost if the same master
key is used twice for different messages. CFB does not suffer from
this problem since different messages lead to different ciphertexts
and hence different keystreams.

Nevertheless, eCFB has the undesirable property that the
keystreams are the same up to and including the first byte in which
the two message streams differ.

This enables Eve to determine the length of the common prefix of
the two message streams and also to determine the XOR of the
first bytes at which they differ.
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Extending chaining modes to bytes

Possible solution

Possible solution to both problems: Use a different initialization
vector for each message. Prefix the ciphertext with the
(unencrypted) IV so Bob can still decrypt.
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Active adversary attacks
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Active adversary
Recall from lecture 3 the active adversary “Mallory” who has the
power to modify messages and generate his own messages as well
as eavesdrop.

Alice sends c = Ek(m), but Bob may receive a corrupted or forged
c ′ 6= c .

How does Bob know that the message he receives really was sent
by Alice?

The naive answer is that Bob computes m′ = Dk(c ′), and if m′

“looks like” a valid message, then Bob accepts it as having come
from Alice. The reasoning here is that Mallory, not knowing k ,
could not possibly have produced a valid-looking message. For any
particular cipher such as DES, that assumption may or may not be
valid.
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Some active attacks

Three successively weaker (and therefore easier) active attacks in
which Mallory might produce fraudulent messages:

1. Produce valid c ′ = Ek(m′) for a message m′ of his choosing.

2. Produce valid c ′ = Ek(m′) for a message m′ that he cannot
choose and perhaps does not even know.

3. Alter a valid c = Ek(m) to produce a new valid c ′ that
corresponds to an altered message m′ of the true message m.

Attack (1) requires computing c = Ek(m) without knowing k.

This is similar to Eve’s ciphertext-only passive attack where she
tries to compute m = Dk(c) without knowing k .

It’s conceivable that one attack is possible but not the other.
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Replay attacks

One form of attack (2) clearly is possible.

In a replay attack, Mallory substitutes a legitimate old encrypted
message c ′ for the current message c .

It can be thwarted by adding timestamps and/or sequence
numbers to the messages so that Bob can recognize when old
messages are being received.

Of course, this only works if Alice and Bob anticipate the attack
and incorporate appropriate countermeasures into their protocol.
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Fake encrypted messages

Even if replay attacks are ruled out, a cryptosystem that is secure
against attack (1) might still permit attack (2).

There are all sorts of ways that Mallory can generate values c ′.

What gives us confidence that Bob won’t accept one of them as
being valid?
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Message-altering attacks

Attack (3) might be possible even when (1) and (2) are not.

For example, if c1 and c2 are encryptions of valid messages,
perhaps so is c1 ⊕ c2.

This depends entirely on particular properties of Ek unrelated to
the difficulty of decrypting a given ciphertext.

We will see some cryptosystems later that do have the property of
being vulnerable to attack (3). In some contexts, this ability to do
meaning computations on ciphertexts can actually be useful, as we
shall see.
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Encrypting random-looking strings

Cryptosystems are not always used to send natural language or
other highly-redundant messages.

For example, suppose Alice wants to send Bob her password to a
web site. Knowing full well the dangers of sending passwords in the
clear over the internet, she chooses to encrypt it instead. Since
passwords are supposed to look like random strings of characters,
Bob will likely accept anything he gets from Alice.

He could be quite embarrassed (or worse) claiming he knew Alice’s
password when in fact the password he thought was from Alice was
actually a fraudulent one derived from a random ciphertext c ′

produced by Mallory.
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Steganography
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Steganography
Steganography, hiding one message inside another, is an old
technique that is still in use.

For example, a message can be hidden inside a graphics image file
by using the low-order bit of each pixel to encode the message.
The visual effect of these tiny changes is generally too small to be
noticed by the user.

The message can be hidden further by compressing it or by
encrypting it with a conventional cryptosystem.

Unlike conventional cryptosystems, steganography relies on the
secrecy of the method of hiding for its security.

If Eve does not even recognize the message as ciphertext, then she
is not likely to attempt to decrypt it.
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Public-key cryptography
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Public-key cryptography

Classical cryptography uses a single key for both encryption and
decryption. This is also called a symmetric or 1-key cryptography.

There is no logical reason why the encryption and decryption keys
should be the same.

Allowing them to differ gives rise to asymmetric cryptography, also
known as public-key or 2-key cryptography.
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Asymmetric cryptosystems

An asymmetric cryptosystem has a pair k = (ke , kd) of related
keys, the encryption key ke and the decryption key kd .

Alice encrypts a message m by computing c = Eke (m).
Bob decrypts c by computing m = Dkd

(c).

I We sometimes write e instead of ke and d instead of kd , e.g.,
Ee(m) and Dd(c).

I We sometimes write k instead of ke or kd where the meaning
is clear from context, e.g., Ek(m) and Dk(c).

In practice, it isn’t generally as confusing as all this, but the
potential for misunderstanding is there.

As always, the decryption function inverts the encryption function,
so m = Dd(Ee(m)).
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Security requirement

Should be hard for Eve to find m given c = Ee(m) and e.

I The system remains secure even if the encryption key e is
made public!

I e is said to be the public key and d the private key.

Reason to make e public.

I Anybody can send an encrypted message to Bob. Sandra
obtains Bob’s public key e and sends c = Ee(m) to Bob.

I Bob recovers m by computing Dd(c), using his private key d .

This greatly simplifies key management. No longer need a secure
channel between Alice and Bob for the initial key distribution
(which I have carefully avoided talking about so far).
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Man-in-the-middle attack against 2-key cryptosystem

An active adversary Mallory can carry out a nasty
man-in-the-middle attack.

I Mallory sends his own encryption key to Sandra when she
attempts to obtain Bob’s key.

I Not knowing she has been duped, Sandra encrypts her private
data using Mallory’s public key, so Mallory can read it (but
Bob cannot)!

I To keep from being discovered, Mallory intercepts each
message from Sandra to Bob, decrypts using his own
decryption key, re-encrypts using Bob’s public encryption key,
and sends it on to Bob. Bob, receiving a validly encrypted
message, is none the wiser.
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Passive attacks against a 2-key cryptosystem

Making the encryption key public also helps a passive attacker.

1. Chosen-plaintext attacks are available since Eve can generate
as many plaintext-ciphertext pairs as she wishes using the
public encryption function Ee().

2. The public encryption function also gives Eve a foolproof way
to check the validity of a potential decryption. Namely, Eve
can verify Dd(c) = m0 for some candidate message m0 by
checking that c = Ee(m0).
Redundancy in the set of meaningful messages is no longer
necessary for brute force attacks.
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Facts about asymmetric cryptosystems

Good asymmetric cryptosystems are much harder to design than
good symmetric cryptosystems.

All known asymmetric systems are orders of magnitude slower than
corresponding symmetric systems.
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Hybrid cryptosystems

Asymmetric and symmetric cryptosystems are often used together.
Let (E 2, D2) be a 2-key cryptosystem and (E 1, D1) be a 1-key
cryptosystem.

Here’s how Alice sends a secret message m to Bob.

I Alice generates a random session key k .

I Alice computes c1 = E 1
k (m) and c2 = E 2

e (k), where e is Bob’s
public key, and sends (c1, c2) to Bob.

I Bob computes k = D2
d(c2) using his private decryption key d

and then computes m = D1
k (c1).

This is much more efficient than simply sending E 2
e (m) in the

usual case that m is much longer than k.

Note that the 2-key system is used to encrypt random strings!
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RSA
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Overview of RSA

Probably the most commonly used asymmetric cryptosystem today
is RSA, named from the initials of its three inventors, Rivest,
Shamir, and Adelman.

Unlike the symmetric systems we have been talking about so far,
RSA is based not on substitution and transposition but on
arithmetic involving very large integers—numbers that are
hundreds or even thousands of bits long.

To understand why RSA works requires knowing a bit of number
theory. However, the basic ideas can be presented quite simply,
which I will do now.
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RSA spaces

The message space, ciphertext space, and key space for RSA is the
set of integers Zn = {0, . . . , n − 1} for some very large integer n.

For now, think of n as a number so large that its binary
representation is 1024 bits long.

Such a number is unimaginably big. It is bigger than 21023 ≈ 10308.

For comparison, the number of atoms in the observable universe1

is estimated to be “only” 1080.

1Wikipedia, https://en.wikipedia.org/wiki/Observable universe
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Encoding bit strings by integers

To use RSA as a block cipher on bit strings, Alice must convert
each block to an integer m ∈ Zn, and Bob must convert m back to
a block.

Many such encodings are possible, but perhaps the simplest is to
prepend a “1” to the block x and regard the result as a binary
integer m.

To decode m to a block, write out m in binary and then delete the
initial “1” bit.

To ensure that m < n as required, we limit the length of our blocks
to 1022 bits.
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RSA key generation

Here’s how Bob generates an RSA key pair.

I Bob chooses two sufficiently large distinct prime numbers p
and q and computes n = pq.
For security, p and q should be about the same length (when
written in binary).

I He computes two numbers e and d with a certain
number-theoretic relationship.

I The public key is the pair ke = (e, n). The private key is the
pair kd = (d , n). The primes p and q are no longer needed
and should be discarded.
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RSA encryption and decryption

To encrypt, Alice computes c = me mod n. 2

To decrypt, Bob computes m = cd mod n.

Here, a mod n denotes the remainder when a is divided by n.

This works because e and d are chosen so that, for all m,

m = (me mod n)d mod n. (1)

That’s all there is to it, once the keys have been found.

Most of the complexity in implementing RSA has to do with key
generation, which fortunately is done only infrequently.

2For now, assume all messages and ciphertexts are integers in Zn.
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RSA questions
You should already be asking yourself the following questions:

I How does one find n, e, d such that equation 1 is satisfied?

I Why is RSA believed to be secure?

I How can one implement RSA on a computer when most
computers only support arithmetic on 32-bit or 64-bit
integers, and how long does it take?

I How can one possibly compute me mod n for 1024 bit
numbers. me , before taking the remainder, has size roughly(

21024
)21024

= 21024×21024
= 2210×21024

= 221034
.

This is a number that is roughly 21034 bits long! No computer
has enough memory to store that number, and no computer is
fast enough to compute it.
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Tools needed to answer RSA questions

Two kinds of tools are needed to understand and implement RSA.

Algorithms: Need clever algorithms for primality testing, fast
exponentiation, and modular inverse computation.

Number theory: Need some theory of Zn, the integers modulo n,
and some special properties of numbers n that are
the product of two primes.
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Some number theory
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Factoring

Factoring assumption

The factoring problem is to find a prime divisor of a composite
number n.

The factoring assumption is that there is no probabilistic
polynomial-time algorithm for solving the factoring problem, even
for the special case of an integer n that is the product of just two
distinct primes

The security of RSA is based on the factoring assumption. No
feasible factoring algorithm is known, but there is no proof that
such an algorithm does not exist.
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Factoring

How big is big enough?

The security of RSA depends on n, p, q being sufficiently large.

What is sufficiently large? That’s hard to say, but n is typically
chosen to be at least 1024 bits long, or for better security, 2048
bits long.

The primes p and q whose product is n are generally chosen be
roughly the same length, so each will be about half as long as n.
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Bignums

Algorithms for arithmetic on big numbers

The arithmetic built into typical computers can handle only 32-bit
or 64-bit integers. Hence, all arithmetic on large integers must be
performed by software routines.

The straightforward algorithms for addition and multiplication have
time complexities O(N) and O(N2), respectively, where N is the
length (in bits) of the integers involved.

Asymptotically faster multiplication algorithms are known, but they
involve large constant factor overheads. It’s not clear whether they
are practical for numbers of the sizes we are talking about.
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Bignums

Big number libraries

A lot of cleverness is possible in the careful implementation of even
the O(N2) multiplication algorithms, and a good implementation
can be many times faster in practice than a poor one. They are
also hard to get right because of many special cases that must be
handled correctly!

Most people choose to use big number libraries written by others
rather than write their own code.

Two such libraries that you can use in this course:

1. GMP (GNU Multiple Precision Arithmetic Library);

2. The big number routines in the openssl crypto library.
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Bignums

GMP

GMP provides a large number of highly-optimized function calls for
use with C and C++.

It is preinstalled on all of the Zoo nodes and supported by the open
source community. Type info gmp at a shell for documentation.
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Bignums

Openssl crypto package

OpenSSL is a cryptography toolkit implementing the Secure
Sockets Layer (SSL v2/v3) and Transport Layer Security (TLS v1)
network protocols and related cryptography standards required by
them.

It is widely used and pretty well debugged. The protocols require
cryptography, and OpenSSL implements its own big number
routines which are contained in its crypto library.

Type man crypto for general information about the library, and
man bn for specifics of the big number routines.
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