
Outline Exp RSA Integer Division

CPSC 467b: Cryptography and Computer
Security

Michael J. Fischer

Lecture 8
February 7, 2013

CPSC 467b, Lecture 8 1/38

Outline Exp RSA Integer Division

Fast Exponentiation Algorithms

Number Theory Needed for RSA

Integer Division
Quotient, remainder, and mod
The mod relation
GCD
Relatively prime numbers, Z∗n, and φ(n)

CPSC 467b, Lecture 8 2/38

Outline Exp RSA Integer Division

Fast Exponentiation Algorithms

CPSC 467b, Lecture 8 3/38

Outline Exp RSA Integer Division

Modular exponentiation

The basic operation of RSA is modular exponentiation of big
numbers, i.e., computing me mod n for big numbers m, e, and n.

The obvious way to compute this would be to compute first
t = me and then compute t mod n.

This has two serious drawbacks.

CPSC 467b, Lecture 8 4/38

Outline Exp RSA Integer Division

Computing me the conventional way is too slow

The simple iterative loop to compute me requires e multiplications,
or about 21024 operations in all. This computation would run
longer than the current age of the universe (which is estimated to
be 15 billion years).

Assuming one loop iteration could be done in one microsecond
(very optimistic seeing as each iteration requires computing a
product and remainder of big numbers), only about 30× 1012

iterations could be performed per year, and only about 450× 1021

iterations in the lifetime of the universe. But 450× 1021 ≈ 279, far
less than e − 1.

CPSC 467b, Lecture 8 5/38

Outline Exp RSA Integer Division

The result of computing me is too big to write down.

The number me is too big to store! This number, when written in
binary, is about 1024 ∗ 21024 bits long, a number far larger than the
number of atoms in the universe (which is estimated to be only
around 1080 ≈ 2266).

CPSC 467b, Lecture 8 6/38

Outline Exp RSA Integer Division

Controlling the size of intermediate results

The trick to get around the second problem is to do all arithmetic
modulo n, that is, reduce the result modulo n after each arithmetic
operation.

The product of two length ` numbers is only length 2` before
reduction mod n, so in this way, one never has to deal with
numbers longer than about 2048 bits.

Question to think about: Why is it correct to do this?

CPSC 467b, Lecture 8 7/38

Outline Exp RSA Integer Division

Efficient exponentiation

The trick to avoiding the first problem is to use a more efficient
exponentiation algorithm based on repeated squaring.

For the special case of e = 2k , one computes me mod n as follows:

m0 = m
m1 = (m0 ∗m0) mod n
m2 = (m1 ∗m1) mod n

...
mk = (mk−1 ∗mk−1) mod n.

Clearly, mi = m2i
mod n for all i .

CPSC 467b, Lecture 8 8/38

Outline Exp RSA Integer Division

Combining the mi for general e

For values of e that are not powers of 2, me mod n can be
obtained as the product modulo n of certain mi ’s.

Express e in binary as e = (bsbs−1 . . . b2b1b0)2. Then e =
∑

i bi2
i ,

so
me = m

P
i bi2

i
=

∏
i

mbi2
i

=
∏
i

(m2i
)bi =

∏
i : bI =1

mi .

Since each bi ∈ {0, 1}, we include exactly those mi in the final
product for which bi = 1. Hence,

me mod n =
∏

i : bI =1

mi mod n.

CPSC 467b, Lecture 8 9/38

Outline Exp RSA Integer Division

Towards greater efficiency

It is not necessary to perform this computation in two phases.

Rather, the two phases can be combined together, resulting in
slicker and simpler algorithms that do not require the explicit
storage of the mi ’s.

We give both a recursive and an iterative version.

CPSC 467b, Lecture 8 10/38

Outline Exp RSA Integer Division

A recursive exponentiation algorithm

Here is a recursive version written in C notation, but it should be
understood that the C programs only work for numbers smaller
than 216. To handle larger numbers requires the use of big number
functions.

/* computes m^e mod n recursively */
int modexp(int m, int e, int n) {
int r;
if (e == 0) return 1; /* m^0 = 1 */
r = modexp(m*m % n, e/2, n); /* r = (m^2)^(e/2) mod n */
if ((e&1) == 1) r = r*m % n; /* handle case of odd e */
return r;

}

CPSC 467b, Lecture 8 11/38

Outline Exp RSA Integer Division

An iterative exponentiation algorithm

This same idea can be expressed iteratively to achieve even greater
efficiency.

/* computes m^e mod n iteratively */
int modexp(int m, int e, int n) {
int r = 1;
while (e > 0) {
if ((e&1) == 1) r = r*m % n;
e /= 2;
m = m*m % n;

}
return r;

}

CPSC 467b, Lecture 8 12/38

Outline Exp RSA Integer Division

Correctness

The loop invariant is

e > 0 ∧ (me0
0 mod n = rme mod n) (1)

where m0 and e0 are the initial values of m and e, respectively.

Proof of correctness:

I It is easily checked that (1) holds at the start of each iteration.

I If the loop exits, then e = 0, so r mod n is the desired result.

I Termination is ensured since e gets reduced during each
iteration.

CPSC 467b, Lecture 8 13/38

Outline Exp RSA Integer Division

A minor optimization
Note that the last iteration of the loop computes a new value of m
that is never used. A slight efficiency improvement results from
restructuring the code to eliminate this unnecessary computation.
Following is one way of doing so.

/* computes m^e mod n iteratively */
int modexp(int m, int e, int n) {
int r = ((e&1) == 1) ? m % n : 1;
e /= 2;
while (e > 0) {
m = m*m % n;
if ((e&1) == 1) r = r*m % n;
e /= 2;

}
return r;

}

CPSC 467b, Lecture 8 14/38

Outline Exp RSA Integer Division

Number Theory Needed for RSA

CPSC 467b, Lecture 8 15/38

Outline Exp RSA Integer Division

Number theory overview

In this and following sections, we review some number theory that
is needed for understanding RSA.

I will provide only a high-level overview. Further details are
contained in course handouts and the textbooks.

CPSC 467b, Lecture 8 16/38

Outline Exp RSA Integer Division

Summary of what is needed

Here’s a summary of the number theory needed to understand RSA
and its associate algorithms.

I Greatest common divisor, Zn, modn, φ(n), Z∗n, and how to
add, subtract, multiply, and find inverses mod n.

I Euler’s theorem: aφ(n) ≡ 1 (mod n) for a ∈ Z∗n.

I How to generate large prime numbers: density of primes and
testing primality.

CPSC 467b, Lecture 8 17/38

Outline Exp RSA Integer Division

How these facts apply to RSA
I The RSA key pair (e, d) is chosen to satisfy the modular

equation ed ≡ 1 (mod φ(n)).
I To find (e, d), we repeatedly choose e at random from Zn

until we find one in Z∗n, and then solve the modular equation
ed ≡ 1 (mod φ(n)) for d . We compute gcd to test for
membership in Z∗n.

I Using Euler’s theorem, we can show med ≡ m (mod n) for all
m ∈ Z∗n. This implies Dd(Ee(m)) = m. To show that
decryption works even in the rare case that m ∈ Zn − Z∗n
requires some more number theory that we will omit.

I To find p and q, we choose large numbers and test each for
primality until we find two distinct primes. We must show
that the density of primes is large enough for this procedure to
be feasible.

CPSC 467b, Lecture 8 18/38

Outline Exp RSA Integer Division

Integer Division

CPSC 467b, Lecture 8 19/38

Outline Exp RSA Integer Division

Quotient, remainder, and mod

Quotient and remainder

Theorem (division theorem)

Let a, b be integers and assume b > 0. There are unique integers q
(the quotient) and r (the remainder) such that a = bq + r and
0 ≤ r < b.

Write the quotient as a÷ b and the remainder as a mod b. Then

a = b × (a÷ b) + (a mod b).

Equivalently,
a mod b = a− b × (a÷ b).

a÷ b = ba/bc.1

1Here, / is ordinary real division and bxc, the floor of x , is the greatest
integer ≤ x . In C, / is used for both ÷ and / depending on its operand types.

CPSC 467b, Lecture 8 20/38

Outline Exp RSA Integer Division

Quotient, remainder, and mod

The mod operator for negative numbers

When either a or b is negative, there is no consensus on the
definition of a mod b.

By our definition, a mod b is always in the range [0 . . . b − 1], even
when a is negative.

Example,

(−5) mod 3 = (−5)− 3× ((−5)÷ 3) = −5− 3× (−2) = 1.

CPSC 467b, Lecture 8 21/38

Outline Exp RSA Integer Division

Quotient, remainder, and mod

The mod operator % in C

In the C programming language, the mod operator % is defined
differently, so (a % b) 6= (a mod b) when a is negative and b is
positive.

The C standard defines a % b to be the number r satisfying the
equation (a/b) ∗ b + r = a, so r = a− (a/b) ∗ b.

C also defines a/b to be the result of rounding the real number
a/b towards zero, so −5/3 = −1. Hence,

−5 % 3 = −5− (−5/3) ∗ 3 = −5 + 3 = −2.

CPSC 467b, Lecture 8 22/38

Outline Exp RSA Integer Division

Quotient, remainder, and mod

Divides

We say that b divides a (exactly) and write b |a in case
a mod b = 0.

Fact
If d |(a + b), then either d divides both a and b, or d divides
neither of them.

To see this, suppose d |(a + b) and d |a. Then by the division
theorem, a + b = dq1 and a = dq2 for some integers q1 and q2.
Substituting for a and solving for b, we get

b = dq1 − dq2 = d(q1 − q2).

But this implies d |b, again by the division theorem.

CPSC 467b, Lecture 8 23/38

Outline Exp RSA Integer Division

The mod relation

The mod relation

We just saw that mod is a binary operation on integers.

Mod is also used to denote a relationship on integers:

a ≡ b (mod n) iff n |(a− b).

That is, a and b have the same remainder when divided by n. An
immediate consequence of this definition is that

a ≡ b (mod n) iff (a mod n) = (b mod n).

Thus, the two notions of mod aren’t so different after all!

We sometimes write a ≡n b to mean a ≡ b (mod n).

CPSC 467b, Lecture 8 24/38

Outline Exp RSA Integer Division

The mod relation

Mod is an equivalence relation

The two-place relationship ≡n is an equivalence relation.

Its equivalence classes are called residue classes modulo n and are
denoted by [b]≡n = {a | a ≡ b (mod n)} or simply by [b].

For example, if n = 7, then [10] = {. . .− 11,−4, 3, 10, 17, . . .}.

Fact
[a] = [b] iff a ≡ b (mod n).

CPSC 467b, Lecture 8 25/38

Outline Exp RSA Integer Division

The mod relation

Canonical names

If x ∈ [b], then x is said to be a representative or name of the
equivalence class [b]. Obviously, b is a representative of [b].
Thus, [−11], [−4], [3], [10], [17] are all names for the same
equivalence class.

The canonical or preferred name for the class [b] is the unique
integer in [b] ∩ {0, 1, . . . , n − 1}.

Thus, the canonical name for [10] is 10 mod 7 = 3.

CPSC 467b, Lecture 8 26/38

Outline Exp RSA Integer Division

The mod relation

Mod is a congruence relation
The relation ≡n is a congruence relation with respect to addition,
subtraction, and multiplication of integers.

Fact
For each arithmetic operation � ∈ {+,−,×}, if a ≡ a′ (mod n)
and b ≡ b′ (mod n), then

a� b ≡ a′ � b′ (mod n).

The class containing the result of a� b depends only on the
classes to which a and b belong and not the particular
representatives chosen.

Hence, we can perform arithmetic on equivalence classes by
operating on their names.

CPSC 467b, Lecture 8 27/38

Outline Exp RSA Integer Division

GCD

Greatest common divisor

Definition
The greatest common divisor of two integers a and b, written
gcd(a, b), is the largest integer d such that d |a and d |b.

gcd(a, b) is always defined unless a = b = 0 since 1 is a divisor of
every integer, and the divisor of a non-zero number cannot be
larger (in absolute value) than the number itself.

Question: Why isn’t gcd(0, 0) well defined?

CPSC 467b, Lecture 8 28/38

Outline Exp RSA Integer Division

GCD

Computing the GCD

gcd(a, b) is easily computed if a and b are given in factored form.

Namely, let pi be the i th prime. Write a =
∏

pei
i and b =

∏
p fi
i .

Then
gcd(a, b) =

∏
p

min(ei ,fi)
i .

Example: 168 = 23 · 3 · 7 and 450 = 2 · 32 · 52, so
gcd(168, 450) = 2 · 3 = 6.

However, factoring is believed to be a hard problem, and no
polynomial-time factorization algorithm is currently known. (If it
were easy, then Eve could use it to break RSA, and RSA would be
of no interest as a cryptosystem.)

CPSC 467b, Lecture 8 29/38

Outline Exp RSA Integer Division

GCD

Euclidean algorithm

Fortunately, gcd(a, b) can be computed efficiently without the
need to factor a and b using the famous Euclidean algorithm.

Euclid’s algorithm is remarkable, not only because it was
discovered a very long time ago, but also because it works without
knowing the factorization of a and b.

CPSC 467b, Lecture 8 30/38

Outline Exp RSA Integer Division

GCD

Euclidean identities

The Euclidean algorithm relies on several identities satisfied by the
gcd function. In the following, assume a > 0 and a ≥ b ≥ 0:

gcd(a, b) = gcd(b, a) (2)

gcd(a, 0) = a (3)

gcd(a, b) = gcd(a− b, b) (4)

Identity 2 is obvious from the definition of gcd. Identity 3 follows
from the fact that every positive integer divides 0. Identity 4
follows from the basic fact relating divides and addition from
lecture 7.

CPSC 467b, Lecture 8 31/38

Outline Exp RSA Integer Division

GCD

Computing GCD without factoring

The Euclidean identities allow the problem of computing gcd(a, b)
to be reduced to the problem of computing gcd(a− b, b).

The new problem is “smaller” as long as b > 0.

The size of the problem gcd(a, b) is |a|+ |b|, the sum of the two
arguments. This leads to an easy recursive algorithm.

int gcd(int a, int b)
{
if (a < b) return gcd(b, a);
else if (b == 0) return a;
else return gcd(a-b, b);

}
Nevertheless, this algorithm is not very efficient, as you will quickly
discover if you attempt to use it, say, to compute gcd(1000000, 2).

CPSC 467b, Lecture 8 32/38

Outline Exp RSA Integer Division

GCD

Repeated subtraction

Repeatedly applying identity (4) to the pair (a, b) until it can’t be
applied any more produces the sequence of pairs

(a, b), (a− b, b), (a− 2b, b), . . . , (a− qb, b).

The sequence stops when a− qb < b.

How many times you can subtract b from a while remaining
non-negative?
Answer: The quotient q = ba/bc.

CPSC 467b, Lecture 8 33/38

Outline Exp RSA Integer Division

GCD

Using division in place of repeated subtractions

The amout a− qb that is left after q subtractions is just the
remainder a mod b.

Hence, one can go directly from the pair (a, b) to the pair
(a mod b, b).

This proves the identity

gcd(a, b) = gcd(a mod b, b). (5)

CPSC 467b, Lecture 8 34/38

Outline Exp RSA Integer Division

GCD

Full Euclidean algorithm
Recall the inefficient GCD algorithm.
int gcd(int a, int b) {
if (a < b) return gcd(b, a);
else if (b == 0) return a;
else return gcd(a-b, b);

}

The following algorithm is exponentially faster.
int gcd(int a, int b) {
if (b == 0) return a;
else return gcd(b, a%b);

}

Principal change: Replace gcd(a-b,b) with gcd(b, a%b).
Besides collapsing repeated subtractions, we have a ≥ b for all but
the top-level call on gcd(a, b). This eliminates roughly half of the
remaining recursive calls.

CPSC 467b, Lecture 8 35/38

Outline Exp RSA Integer Division

GCD

Complexity of GCD

The new algorithm requires at most in O(n) stages, where n is the
sum of the lengths of a and b when written in binary notation, and
each stage involves at most one remainder computation.

The following iterative version eliminates the stack overhead:

int gcd(int a, int b) {
int aa;
while (b > 0) {
aa = a;
a = b;
b = aa % b;

}
return a;

}

CPSC 467b, Lecture 8 36/38

Outline Exp RSA Integer Division

Relatively prime numbers, Z∗n , and φ(n)

Relatively prime numbers

Two integers a and b are relatively prime if they have no common
prime factors.

Equivalently, a and b are relatively prime if gcd(a, b) = 1.

Let Z∗n be the set of integers in Zn that are relatively prime to n, so

Z∗n = {a ∈ Zn | gcd(a, n) = 1}.

CPSC 467b, Lecture 8 37/38

Outline Exp RSA Integer Division

Relatively prime numbers, Z∗n , and φ(n)

Euler’s totient function φ(n)
φ(n) is the cardinality (number of elements) of Z∗n, i.e.,

φ(n) = |Z∗n|.

Properties of φ(n):

1. If p is prime, then
φ(p) = p − 1.

2. More generally, if p is prime and k ≥ 1, then

φ(pk) = pk − pk−1 = (p − 1)pk−1.

3. If gcd(m, n) = 1, then

φ(mn) = φ(m)φ(n).

CPSC 467b, Lecture 8 38/38

	Outline
	Fast Exponentiation Algorithms
	Number Theory Needed for RSA
	Integer Division
	Quotient, remainder, and mod
	The mod relation
	GCD
	Relatively prime numbers, Zn, and (n)

