
Outline Special Signatures Message Digests

CPSC 467b: Cryptography and Computer
Security

Michael J. Fischer

Lecture 15
March 7, 2013

CPSC 467b, Lecture 15 1/30

Outline Special Signatures Message Digests

Digital Signatures with Special Properties (continued)
Group signatures
Short signatures
Aggregate signatures

Message Digest / Cryptographic Hash Functions

CPSC 467b, Lecture 15 2/30

Outline Special Signatures Message Digests

Digital Signatures with Special Properties

(continued)

CPSC 467b, Lecture 15 3/30

Outline Special Signatures Message Digests

Group signatures

Group signatures

A group signature allows a member of a group to anonymously
sign for the group.

For example, a bank employee might be authorized to sign for the
bank but not want his personal identity to be revealed.

A group manager adds group members and can determine the
identify of the signer.

A revocation manager revokes signature authority of group
members.

CPSC 467b, Lecture 15 4/30

Outline Special Signatures Message Digests

Group signatures

Properties of group signatures

Basic properties of group signatures (from Wikipedia):

Soundness and Completeness Valid signatures by group members
always verify correctly, and invalid signatures always
fail verification.

Unforgeable Only members of the group can create valid group
signatures.

Anonymity Given a message and its signature, the identity of the
individual signer cannot be determined without the
group manager’s secret key.

Traceability Given any valid signature, the group manager should
be able to trace which user issued the signature.

CPSC 467b, Lecture 15 5/30

https://en.wikipedia.org/wiki/Group_signature

Outline Special Signatures Message Digests

Group signatures

Properties of group signatures (cont.)

Unlinkability Given two messages and their signatures, we cannot
tell if the signatures were from the same signer or
not.

No Framing Even if all other group members (and the managers)
collude, they cannot forge a signature for a
non-participating group member.

Unforgeable tracing verification The revocation manager cannot
falsely accuse a signer of creating a signature he did
not create.

CPSC 467b, Lecture 15 6/30

Outline Special Signatures Message Digests

Short signatures

Short signatures

The signature schemes we have studied all produce signatures
whose length is comparable to the parameter lengths of the
underlying cryptosystem, typically 1024 or 2048 or longer.

For many applications, it is desirable to have “short” signatures of
lengths, say, 160 or 128 bits.

CPSC 467b, Lecture 15 7/30

Outline Special Signatures Message Digests

Short signatures

Applications of short signatures

Some applications1

I Electronic airline tickets.

I Serial numbers for software.

I Authorization codes.

I Electronic postage stamps.

I Electronic banking, bank notes, printed documents and
certificates.

I Signing data in smart cards and other devices with limited
storage capacity.

1From ECRYPT report D.AZTEC.7, “New Technical Trends in Asymmetric
Cryptography”.

CPSC 467b, Lecture 15 8/30

http://www.ecrypt.eu.org/ecrypt1/documents/D.AZTEC.7.pdf
http://www.ecrypt.eu.org/ecrypt1/documents/D.AZTEC.7.pdf

Outline Special Signatures Message Digests

Aggregate signatures

Aggregate signatures

From the abstract:2

“An aggregate signature scheme is a digital signature
that supports aggregation: Given n signatures on n
distinct messages from n distinct users, it is possible to
aggregate all these signatures into a single short
signature. This single signature (and the n original
messages) will convince the verifier that the n users did
indeed sign the n original messages (i.e., user i signed
message Mi for i = 1, . . . , n).”

2“Aggregate and Verifiably Encrypted Signatures from Bilinear Maps” by D.
Boneh, C. Gentry, H. Shacham, and B. Lynn, Eurocrypt 2003, LNCS, 2656,
416–432.

CPSC 467b, Lecture 15 9/30

http://crypto.stanford.edu/~dabo/abstracts/aggreg.html
http://crypto.stanford.edu/~dabo/abstracts/aggreg.html
http://crypto.stanford.edu/~dabo/abstracts/aggreg.html

Outline Special Signatures Message Digests

Message Digest / Cryptographic Hash

Functions

CPSC 467b, Lecture 15 10/30

Outline Special Signatures Message Digests

Random functions

A random function from domain M to range H is a uniformly
distributed element h over the space of all functions M→H.

Intuitively, for each m ∈M, h(m) is a uniformly distributed
random number over H, but for any particular h, h(m) is a fixed
value. If h(m) is evaluated several times, the answer is the same
each time.

CPSC 467b, Lecture 15 11/30

Outline Special Signatures Message Digests

Cryptographic use of random functions

A random function h gives a way to protect the integrity of
messages.

Suppose Bob knows h(m) for Alice’s message m, and Bob receives
m′ from Alice. If h(m′) = h(m), then with very high probability,
m′ = m, and Bob can be assured of the integrity of m′.

The problem with this approach is that we have no succinct way of
describing random functions, so there is no way for Bob to
compute h(m′).

CPSC 467b, Lecture 15 12/30

Outline Special Signatures Message Digests

Message digest functions

A message digest (also called a cryptographic hash or fingerprint)
function is a fixed (non-random) function that is designed to “look
like” a random function.

The goal is to preserve the integrity-checking property of random
functions: If Bob knows h(m) and he receives m′, then if
h(m′) = h(m), he can reasonably assume that m′ = m.

We now try to formalize what we require of a message digest
function in order to have this property.

We also show that message digest functions do not necessarily
“look random”, so one should not assume such functions share
other properties with random functions.

CPSC 467b, Lecture 15 13/30

Outline Special Signatures Message Digests

Formal definition of message digest functions

Let M be a message space and H a hash value space, and assume
|M| � |H|.

A message digest (or cryptographic one-way hash or fingerprint)
function h maps M→H.

A collision is a pair of messages m1, m2 such that h(m1) = h(m2),
and we say that m1 and m2 collide.

Because |M| � |H|, h is very far from being one-to-one, and there
are many colliding pairs. Nevertheless, it should be hard for an
adversary to find collisions.

CPSC 467b, Lecture 15 14/30

Outline Special Signatures Message Digests

Collision-avoidance properties

We consider three increasingly strong versions of what it means to
be hard to find collisions:

I One-way: Given y ∈ H, it is hard to find m ∈M such that
h(m) = y .

I Weakly collision-free: Given m ∈M, it is hard to find
m′ ∈M such that m′ 6= m and h(m′) = h(m).

I Strongly collision-free: It is hard to find colliding pairs (m, m′).

These definitions are rather vague, for they ignore issues of what
we mean by “hard” and “find”.

CPSC 467b, Lecture 15 15/30

Outline Special Signatures Message Digests

What does “hard” mean?

Intuitively, “hard” means that Mallory cannot carry out the
computation in a feasible amount of time on a realistic computer.

CPSC 467b, Lecture 15 16/30

Outline Special Signatures Message Digests

What does “find” mean?

The term “find” may mean

I “always produces a correct answer”, or

I “produces a correct answer with high probability”, or

I “produces a correct answer on a significant number of
possible inputs with non-negligible probability”.

The latter notion of “find” says that Mallory every now and then
can break the system. For any given application, there is a
maximum acceptable rate of error, and we must be sure that our
cryptographic system meets that requirement.

CPSC 467b, Lecture 15 17/30

Outline Special Signatures Message Digests

One-way function
What does it mean for h to be one-way?

Recall from lecture 10, this means that no probabilistic polynomial
time algorithm Ah(y) produces a pre-image m of y under h with
more than negligible probability of success.

This is only required for random y chosen according to a particular
hash value distribution. There might be particular values of y on
which Ah has non-negligible success probability.

The hash value distribution we have in mind is the one induced by
h applied to uniformly distributed m ∈M.

The probability of y is proportional to |h−1(y)|.

This means that h can be considered one-way even though
algorithms do exist that succeed on low-probability subsets of H.

CPSC 467b, Lecture 15 18/30

Outline Special Signatures Message Digests

Constructing one hash function from another

The following example might help clarify these ideas.

Let h(m) be a cryptographic hash function that produces hash
values of length n. Define a new hash function H(m) as follows:

H(m) =

{
0 ·m if |m| = n
1 · h(m) otherwise.

Thus, H produces hash values of length n + 1.

I H(m) is clearly collision-free since the only possible collisions
are for m’s of lengths different from n.

I Any colliding pair (m, m′) for H is also a colliding pair for h.

I Since h is collision-free, then so is H.

CPSC 467b, Lecture 15 19/30

Outline Special Signatures Message Digests

H is one-way

Not so obvious is that H is one-way.

This is true, even though H can be inverted for 1/2 of all possible
hash values y , namely, those that begin with 0.

The reason this doesn’t violate the definition of one-wayness is
that only 2n values of m map to hash values that begin with 0,
and all the rest map to values that begin with 1.

Since we are assuming |M| � |H|, the probability that a uniformly
sampled m ∈M has length exactly n is small.

CPSC 467b, Lecture 15 20/30

Outline Special Signatures Message Digests

Strong implies weak collision-free

There are some obvious relationships between properties of hash
functions that can be made precise once the underlying definitions
are made similarly precise.

Fact
If h is strong collision-free, then h is weak collision-free.

CPSC 467b, Lecture 15 21/30

Outline Special Signatures Message Digests

Proof that strong ⇒ weak collision-free

Proof (Sketch).

Suppose h is not weak collision-free. We show that it is not strong
collision-free by showing how to enumerate colliding message pairs.

The method is straightforward:

I Pick a random message m ∈M.

I Try to find a colliding message m′.

I If we succeed, then output the colliding pair (m, m′).

I If not, try again with another randomly-chosen message.

Since h is not weak collision-free, we will succeed on a significant
number of the messages, so we will succeed in generating a
succession of colliding pairs.

CPSC 467b, Lecture 15 22/30

Outline Special Signatures Message Digests

Speed of finding colliding pairs
How fast the pairs are enumerated depends on how often the
algorithm succeeds and how fast it is.

These parameters in turn may depend on how large M is relative
to H.

It is always possible that h is one-to-one on some subset U of
elements in M, so it is not necessarily true that every message has
a colliding partner.

However, an easy counting argument shows that U has size at
most |H| − 1.

Since we assume |M| � |H|, the probability that a
randomly-chosen message from M lies in U is correspondingly
small.

CPSC 467b, Lecture 15 23/30

Outline Special Signatures Message Digests

Strong implies one-way

In a similar vein, we argue that strong collision-free implies
one-way.

Fact
If h is strong collision-free, then h is one-way.

CPSC 467b, Lecture 15 24/30

Outline Special Signatures Message Digests

Proof that strong ⇒ one-way

Proof (Sketch).

Suppose h is not one-way. Then there is an algorithm A(y) for
finding m such that h(m) = y , and A(y) succeeds with significant
probability when y is chosen randomly with probability proportional
to the size of its preimage. Assume that A(y) returns ⊥ to
indicate failure.

A randomized algorithm to enumerate colliding pairs:

1. Choose random m.
2. Compute y = h(m).
3. Compute m′ = A(y).
4. If m′ 6∈ {⊥, m} then output (m, m′).
5. Start over at step 1.

CPSC 467b, Lecture 15 25/30

Outline Special Signatures Message Digests

Proof (cont.)

Proof (continued).

Each iteration of this algorithm succeeds with significant
probability ε that is the product of the probability that A(y)
succeeds on y and the probability that m′ 6= m.

The latter probability is at least 1/2 except for those values m
which lie in the set of U of messages on which h is one-to-one
(defined in the previous proof).

Thus, assuming |M| � |H|, the algorithm outputs each colliding
pair in expected number of iterations that is only slightly larger
than 1/ε.

CPSC 467b, Lecture 15 26/30

Outline Special Signatures Message Digests

Weak implies one-way

These same ideas can be used to show that weak collision-free
implies one-way, but now one has to be more careful with the
precise definitions.

Fact
If h is weak collision-free, then h is one-way.

CPSC 467b, Lecture 15 27/30

Outline Special Signatures Message Digests

Proof that weak ⇒ one-way

Proof (Sketch).

Suppose as before that h is not one-way, so there is an algorithm
A(y) for finding m such that h(m) = y , and A(y) succeeds with
significant probability when y is chosen randomly with probability
proportional to the size of its preimage.

Assume that A(y) returns ⊥ to indicate failure. We want to show
this implies that the weak collision-free property does not hold, that
is, there is an algorithm that, for a significant number of m ∈M,
succeeds with non-negligible probability in finding a colliding m′.

CPSC 467b, Lecture 15 28/30

Outline Special Signatures Message Digests

Proof that weak ⇒ one-way (cont.)

We claim the following algorithm works:

Given input m:
1. Compute y = h(m).
2. Compute m′ = A(y).
3. If m′ 6∈ {⊥, m} then output (m, m′) and halt.
4. Otherwise, start over at step 1.

This algorithm fails to halt for m ∈ U, but the number of such m
is small (= insignificant) when |M| � |H|.

CPSC 467b, Lecture 15 29/30

Outline Special Signatures Message Digests

Proof that weak ⇒ one-way (cont.)

It may also fail even when a colliding partner m′ exists if it
happens that the value returned by A(y) is m. (Remember, A(y)
is only required to return some preimage of y ; we can’t say which.)

However, corresponding to each such bad case is another one in
which the input to the algorithm is m′ instead of m. In this latter
case, the algorithm succeeds, since y is the same in both cases.
With this idea, we can show that the algorithm succeeds in finding
a colliding partner on at least half of the messages in M− U.

CPSC 467b, Lecture 15 30/30

	Outline
	Digital Signatures with Special Properties (continued)
	Group signatures
	Short signatures
	Aggregate signatures

	Message Digest / Cryptographic Hash Functions

