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Hash Function Constructions
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Extension

Extending a hash function

Suppose we are given a strong collision-free hash function

h : 256-bits→ 128-bits.

How can we use h to build a strong collision-free hash function

H : 512-bits→ 128-bits?

We consider several methods.

In the following, m is 512 bits long.
We write M = m1m2, where m1 and m2 are 256 bits each.
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Extension

Method 1

First idea. Let M = m1m2 and define

H(M) = H(m1m2) = h(m1)⊕ h(m2).

Unfortunately, this fails to be either strong or weak collision-free.

Let M ′ = m2m1. (M,M ′) is always a colliding pair for H except in
the special case that m1 = m2.

Recall that (M,M ′) is a colliding pair iff H(M) = H(M ′) and
M 6= M ′.
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Extension

Method 2

Second idea. Define

H(M) = H(m1m2) = h(h(m1)h(m2)).

m1 and m2 are suitable arguments for h() since |m1| = |m2| = 256.

Also, h(m1)h(m2) is a suitable argument for h() since
|h(m1)| = |h(m2)| = 128.

Theorem
If h is strong collision-free, then so is H.
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Extension

Correctness proof for Method 2

Assume H has a colliding pair (M = m1m2, M ′ = m′1m
′
2).

Then H(M) = H(M ′) but M 6= M ′.

Case 1: h(m1) 6= h(m′1) or h(m2) 6= h(m′2).
Let u = h(m1)h(m2) and u′ = h(m′1)h(m′2).
Then h(u) = H(M) = H(M ′) = h(u′), but u 6= u′.
Hence, (u, u′) is a colliding pair for h.

Case 2: h(m1) = h(m′1) and h(m2) = h(m′2).
Since M 6= M ′, then m1 6= m′1 or m2 6= m′2 (or both).
Whichever pair is unequal is a colliding pair for h.

In each case, we have found a colliding pair for h.

Hence, H not strong collision-free ⇒ h not strong collision-free.
Equivalently, h strong collision-free ⇒ H strong collision-free.
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Chaining

A general chaining method

Let h : r -bits→ t-bits be a hash function, where r ≥ t + 2.
(In the above example, r = 256 and t = 128.)
Define H(m) for m of arbitrary length.

I Divide m after appropriate padding into blocks m1m2 . . .mk ,
each of length r − t − 1.

I Compute a sequence of t-bit states:

s1 = h(0t0m1)
s2 = h(s11m2)

...
sk = h(sk−11mk).

Then H(m) = sk .
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Chaining

Chaining construction gives strong collision-free hash

Theorem
Let h be a strong collision-free hash function. Then the hash
function H constructed from h by chaining is also strong
collision-free.
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Chaining

Correctness proof

Assume H has a colliding pair (m,m′).
We find a colliding pair for h.

I Let m = m1m2 . . .mk give state sequence s1, . . . , sk .

I Let m′ = m′1m
′
2 . . .m

′
k ′ give state sequence s ′1, . . . , s

′
k ′ .

Assume without loss of generality that k ≤ k ′.

Because m and m′ collide under H, we have sk = s ′k ′ .
Let r be the largest value for which sk−r = s ′k ′−r .

Let i = k − r , the index of the first such equal pair si = s ′k ′−k+i .

We proceed by cases.
(continued. . . )
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Chaining

Correctness proof (case 1)

Case 1: i = 1 and k = k ′.

Then sj = s ′j for all j = 1, . . . , k .

Because m 6= m′, there must be some ` such that m` 6= m′`.

If ` = 1, then (0t0m1, 0
t0m′1) is a colliding pair for h.

If ` > 1, then (s`−11m`, s ′`−11m′`) is a colliding pair for h.
(continued. . . )
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Chaining

Correctness proof (case 2)

Case 2: i = 1 and k < k ′.

Let u = k ′ − k + 1.

Then s1 = s ′u.

Since u > 1 we have that

h(0t0m1) = s1 = s ′u = h(s ′u−11m′u),

so (0t0m1, s ′u−11m′u) is a colliding pair for h.

Note that this is true even if 0t = s ′u−1 and m1 = m′u, a possibility
that we have not ruled out.

(continued. . . )
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Chaining

Correctness proof (case 3)

Case 3: i > 1.

Then u = k ′ − k + i > 1.

By choice of i , we have si = s ′u, but si−1 6= s ′u−1.

Hence,
h(si−11mi ) = si = s ′u = h(s ′u−11m′u),

so (si−11mi , s ′u−11m′u) is a colliding pair for h.
(continued. . . )
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Chaining

Correctness proof (conclusion)

In each case, we found a colliding pair for h.

The contradicts the assumption that h is strong collision-free.

Hence, H is also strong collision-free.
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Non-random

Hash values can look non-random

Intuitively, we like to think of h(y) as being “random-looking”,
with no obvious pattern.

Indeed, it would seem that obvious patterns and structure in h
would provide a means of finding collisions, violating the property
of being strong-collision free.

But this intuition is faulty, as I now show.
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Non-random

Example of a non-random-looking hash function

Suppose h is a strong collision-free hash function.

Define H(x) = 0 · h(x).

If (x , x ′) is a colliding pair for H, then (x , x ′) is also a colliding pair
for h.

Thus, H is strong collision-free, despite the fact that the string
H(x) always begins with 0.

Later on, we will talk about how to make functions that truly do
appear to be random (even though they are not).
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Birthday Attack on Hash Functions
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Bits of security for hash functions
MD5 hash function produces 128-bit values, whereas the SHA–xxx
family produces values of 160-bits or more.

How many bits do we need for security?

Both 128 and 160 are more than large enough to thwart a brute
force attack that simply searches randomly for colliding pairs.

However, the Birthday Attack reduces the size of the search space
to roughly the square root of the original size.

MD5’s effective security is at most 64 bits. (
√

2128 = 264.)

SHA–1’s effective security is at most 80-bits. (
√

2160 = 280.)

Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu describe an attack
that reduces this number to only 69-bits (Crypto 2005).
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Birthday Paradox

The birthday paradox is to find the probability that two people in a
set of randomly chosen people have the same birthday.

This probability is greater than 50% in any set of at least 23
randomly chosen people.1.

23 is far less than the 253 people that are needed for the
probability to exceed 50% that at least one of them was born on a
specific day, say January 1.

1See Wikipedia, “Birthday paradox”.
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Birthday Paradox (cont.)

Here’s why it works.

The probability of not having two people with the same birthday is
is

q =
365

365
· 364

365
· · · 343

365
= 0.492703

Hence, the probability that (at least) two people have the same
birthday is 1− q = 0.507297.

This probability grows quite rapidly with the number of people in
the room. For example, with 46 people, the probability that two
share a birthday is 0.948253.
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Birthday attack on hash functions
The birthday paradox can be applied to hash functions to yield a
much faster way to find colliding pairs than simply choosing pairs
at random.

Method: Choose a random set of k messages and see if any
two messages in the set collide.

Thus, with only k evaluations of the hash function, we can test(k
2

)
= k(k − 1)/2 different pairs of messages for collisions.

Of course, these
(k
2

)
pairs are not uniformly distributed, so one

needs a birthday-paradox style analysis of the probability that a
colliding pair will be found.

The general result is that the probability of success is at least 1/2
when k ≈

√
n, where n is the size of the hash value space.
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Practical difficulties of birthday attack

Two problems make this attack difficult to use in practice.

1. One must find duplicates in the list of hash values.
This can be done in time O(k log k) by sorting.

2. The list of hash values must be stored and processed.

For MD5, k ≈ 264. To store k 128-bit hash values requires 268

bytes ≈ 250 exabytes = 250,000 petabytes of storage.

To sort would require log2(k) = 64 passes over the table, which
would process 16 million petabytes of data.
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A back-of-the-envelope calculation

Google was reportedly processing 20 petabytes of data per day in
2008. At this rate, it would take Google more than 800,000 days
or nearly 2200 years just to sort the data.

This attack is still infeasible for values of k needed to break hash
functions. Nevertheless, it is one of the more subtle ways that
cryptographic primitives can be compromised.
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Hash from Cryptosystem
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Building hash functions from cryptosystems

We’ve already seen several cryptographic hash functions as well as
methods for making new hash functions from old.

We describe a way to make a hash function from a symmetric
cryptosystem with encryption function Ek(b).

Assume the key and block lengths are the same. (This rules out
DES but not AES with 128-bit keys.)
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The construction

Let m be a message of arbitrary length. Here’s how to compute
H(m).

I Pad m appropriately and divide it into block lengths
appropriate for the cryptosystem.

I Compute the following state sequence:

s0 = IV
s1 = f (s0,m1)

...
st = f (st−1,mt).

I Define H(m) = st .

IV is an initial vector and f is a function built from E .
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Possible state transition functions f (s, m)

Some possibilities for f are

f1(s,m) = Es(m)⊕m
f2(s,m) = Es(m)⊕m ⊕ s
f3(s,m) = Es(m ⊕ s)⊕m
f4(s,m) = Es(m ⊕ s)⊕m ⊕ s

You should think about why these particular functions do or do not
lead to a strong collision-free hash function.
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A bad state transition function

For example, if t = 1 and f = f1, then

H(m) = f1(IV ,m) = EIV (m)⊕m.

EIV itself is one-to-one (since it’s an encryption function), but
what can we say about H1(m)?

Indeed, if bad luck would have it that EIV is the identity function,
then H(m) = 0 for all m, and all pairs of message blocks collide!
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Authentication Using Passwords
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Authentication problem

The authentication problem

The authentication problem is to identify whom one is
communicating with.

For example, if Alice and Bob are communicating over a network,
then Bob would like to know that he is talking to Alice and not to
someone else on the network.

Knowing the IP address or URL is not adequate since Mallory
might be in control of intermediate routers and name servers.

As with signature schemes, we need some way to differentiate the
real Alice from other users of the network.
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Authentication problem

Possible authentication factors

Alice can be authenticated in one of three ways:

1. By something she knows;

2. By something she possesses;

3. By something she is.

Examples:

1. A secret password;

2. A smart card;

3. Biometric data such as a fingerprint.
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Passwords authentication schemes

Passwords

Assume that Alice possess some secret that is not known to
anyone else. She authenticates herself by proving that she knows
the secret.

Password mechanisms are widely used for authentication.

In the usual form, Alice authenticates herself by sending her
password to Bob.

Bob checks that it matches Alice’s password and grants access.

This is the scheme that is used for local logins to a computer and
is also used for remote authentication on many web sites.
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Passwords authentication schemes

Weaknesses of password schemes

Password schemes have two major security weaknesses.

1. Passwords may be exposed to Eve when being used.

2. After Alice authenticates herself to Bob, Bob can use Alice’s
password to impersonate Alice.
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Passwords authentication schemes

Password exposure

Passwords sent over the network in the clear are exposed to various
kinds of eavesdropping, ranging from ethernet packet sniffers on
the LAN to corrupt ISP’s and routers along the way.

The threat of password capture in this way is so great that one
should never send a password over the internet in the clear.
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Passwords authentication schemes

Some precautions

Users of the old insecure Unix tools should switch to secure
replacements such as ssh, slogin, and scp, or kerberized versions of
telnet and ftp.

Web sites requiring user logins generally use the TSL/SSL
(Transport Layer Security/Secure Socket Layer) protocol to
encrypt the connection, making it safe to transmit passwords to
the site, but some do not.

Depending on how your browser is configured, it will warn you
whenever you attempt to send unencrypted data back to the server.
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Passwords authentication schemes

Password propagation

After Alice’s password reaches the server, it is no longer the case
that only she knows her password.

Now the server knows it, too!

This is no problem if Alice only uses her password to log into that
that particular server.

However, if she uses the same password for other web sites, the
first server can impersonate Alice to any other web site where Alice
uses the same password.
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Passwords authentication schemes

Multiple web sites

Users these days typically have accounts with dozens or hundreds
of different web sites.

The temptation is strong to use the same username-password pairs
on all sites so that they can be remembered.

But that means that anyone with access to the password database
on one site can log into Alice’s account on any of the other sites.

Typically different sites have very differing sensitivity of the data
they protect.

An on-line shopping site may only be protecting a customer’s
shopping cart, whereas a banking site allows access to a customer’s
bank account.
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Passwords authentication schemes

Password policy advice

My advice is to use a different password for each account.

Of course, nobody can keep dozens of different passwords straight,
so the downside of my suggestion is that the passwords must be
written down and kept safe, or stored in a properly-protected
password vault.

If the primary copy gets lost or compromised, then one should have
a backup copy so that one can go to all of the sites ASAP and
change the passwords (and learn if the site has been compromised).

The real problem with simple password schemes is that Alice is
required to send her secrets to other parties in order to use them.
We will later explore authentication schemes that do not require
this.
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Secure password storage

Secure password storage

Another issue with traditional password authentication schemes is
the need to store the passwords on the server for later verification.

I The file in which passwords are store is highly sensitive.

I Operating system protections can (and should) be used to
protect it, but they are not really sufficient.

I Legitimate sysadmins might use passwords found there to log
into users’ accounts at other sites.

I Hackers who manage to break into the computer and obtain
root privileges can do the same thing.

I Finally, backup copies may not be subject to the same system
protections, so someone with access to a backup device could
read everybody’s password from it.

CPSC 467b, Lecture 16 39/60



Outline Hash Constructions Birthday Hash from Cryptosystem Passwords Chinese remainder Quadratic Residues

Secure password storage

Storing encrypted passwords

Rather than store passwords in the clear, it is usual to store
“encrypted” passwords.

That is, the hash value of the password under some cryptographic
hash function is stored instead of the password itself.
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Secure password storage

Using encrypted passwords

The authentication function

I takes the cleartext password from the user,

I computes its hash value,

I and checks that the computed and stored hashed values
match.

Since the password does not contain the actual password, and it is
computationally difficult to invert a cryptographic hash function,
knowledge of the hash value does not allow an attacker to easily
find the password.
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Dictionary attacks

Dictionary attacks on encrypted passwords

Access to an encrypted password file opens up the possibility of a
dictionary attack.

Many users choose weak passwords—words that appear in an
English dictionary or in other available sources of text.

If one has access to the password hashes of legitimate users on the
computer (such as is contained in /etc/passwd on Unix), an
attacker can hash every word in the dictionary and then look for
matches with the password file entries.
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Dictionary attacks

Harm from dictionary attacks

A dictionary attack is quite likely to succeed in compromising at
least a few accounts on a typical system.

Even one compromised account is enough to allow the hacker to
log into the system as a legitimate user, from which other kinds of
attacks are possible that cannot be carried out from the outside.
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Dictionary attacks

Salt

Adding salt is a way to make dictionary attacks more expensive.

I Salt is a random number that is stored along with the hashed
password in the password file.

I The hash function takes two arguments, the password and
salt, and produces a hash value.

I Because the salt is stored (in the clear) in the password file,
the user’s password can be easily verified.

I The same password hashes differently depending on the salt.

I A successful dictionary attack now has to encrypt the entire
dictionary with every possible salt value (or at least with every
salt value that appears in the password file being attacked).

I This increases the cost of the attack by orders of magnitude.
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Chinese Remainder Theorem
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Systems of congruence equations

Theorem (Chinese remainder theorem)

Let n1, n2, . . . , nk be positive pairwise relatively-prime integers2, let
n =

∏k
i=1 ni , and let ai ∈ Zni for i = 1, . . . , k. Consider the system

of congruence equations with unknown x:

x ≡ a1 (mod n1)
x ≡ a2 (mod n2)

...
x ≡ ak (mod nk)

(1)

(1) has a unique solution x ∈ Zn.

2This means that gcd(ni , nj) = 1 for all 1 ≤ i < j ≤ k.
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How to solve congruence equations
To solve for x , let

Ni = n/ni = n1n2 . . . ni−1︸ ︷︷ ︸ · ni+1 . . . nk︸ ︷︷ ︸,
and compute Mi = N−1

i mod ni , for 1 ≤ i ≤ k .

N−1
i (mod ni ) exists since gcd(Ni , ni ) = 1. (Why?)

We can compute N−1
i by solving the associated Diophantine

equation as described in Lecture 10.

The solution to (1) is

x = (
k∑

i=1

aiMiNi ) mod n (2)
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Correctness

Lemma

MjNj ≡
{

1 (mod ni ) if j = i ;
0 (mod ni ) if j 6= i .

Proof.
MiNi ≡ 1 (mod ni ) since Mi = N−1

i mod ni .
If j 6= i , then MjNj ≡ 0 (mod ni ) since ni |Nj .

It follows from the lemma and the fact that ni |n that

x ≡
k∑

i=1

aiMiNi ≡ ai (mod ni ) (3)

for all 1 ≤ i ≤ k , establishing that (2) is a solution of (1).
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Uniqueness

To see that the solution is unique in Zn, let
χ : Zn → Zn1 × . . .× Znk

be the mapping

x 7→ (x mod n1, . . . , x mod nk).

χ is a surjection3 since χ(x) = (a1, . . . , ak) iff x satisfies (1).

Since also |Zn| = |Zn1 × . . .× Znk
|, χ is a bijection, and there is

only one solution to (1) in Zn.

3A surjection is an onto function.
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An alternative proof of uniqueness

A less slick but more direct way of seeing uniqueness is to suppose
that x = u and x = v are both solutions to (1).

Then u ≡ v (mod ni ), so ni |(u − v) for all i .

By the pairwise relatively prime condition on the ni , it follows that
n|(u − v), so u ≡ v (mod n). Hence, the solution is unique in Zn.
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Quadratic Residues, Squares, and Square

Roots
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Square roots in Z∗n

Recall from lecture 13 that to find points on an elliptic curve
requires solving the equation

y2 = x3 + ax + b

for y (mod p), and that requires computing square roots in Z∗p.

Squares and square roots have several other cryptographic
applications as well.

Today, we take a brief tour of the theory of quadratic resides.
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Quadratic residues modulo n

An integer b is a square root of a modulo n if

b2 ≡ a (mod n).

An integer a is a quadratic residue (or perfect square) modulo n if
it has a square root modulo n.
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Quadratic residues in Z∗n
If a, b ∈ Zn and b2 ≡ a (mod n), then

b ∈ Z∗n iff a ∈ Z∗n.

Why? Because

gcd(b, n) = 1 iff gcd(a, n) = 1

This follows from the fact that b2 = a + un for some u, so if p is a
prime divisor of n, then

p |b iff p |a.

Assume that all quadratic residues and square roots are in Z∗n
unless stated otherwise.
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QRn and QNRn

We partition Z∗n into two parts.

QRn = {a ∈ Z∗n | a is a quadratic residue modulo n}.
QNRn = Z∗n −QRn.

QRn is the set of quadratic residues modulo n.

QNRn is the set of quadratic non-residues modulo n.

For a ∈ QRn, we sometimes write

√
a = {b ∈ Z∗n | b2 ≡ a (mod n)},

the set of square roots of a modulo n.
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Quadratic residues in Z∗15

The following table shows all elements of
Z∗15 = {1, 2, 4, 7, 8, 11, 13, 14} and their squares.

b b2 mod 15

1 1
2 4
4 1
7 4

8 = −7 4
11 = −4 1
13 = −2 4
14 = −1 1

Thus, QR15 = {1, 4} and QNR15 = {2, 7, 8, 11, 13, 14}.
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Sqrt mod p

Quadratic residues modulo an odd prime p

Fact
For an odd prime p,

I Every a ∈ QRp has exactly two square roots in Z∗p;

I Exactly 1/2 of the elements of Z∗p are quadratic residues.

In other words, if a ∈ QRp,

|
√

a| = 2.

|QRn| = |Z∗p|/2 =
p − 1

2
.

CPSC 467b, Lecture 16 57/60



Outline Hash Constructions Birthday Hash from Cryptosystem Passwords Chinese remainder Quadratic Residues

Sqrt mod p

Quadratic residues in Z∗11

The following table shows all elements b ∈ Z∗11 and their squares.

b b2 mod 11

1 1
2 4
3 9
4 5
5 3

b −b b2 mod 11

6 −5 3
7 −4 5
8 −3 9
9 −2 4

10 −1 1

Thus, QR11 = {1, 3, 4, 5, 9} and QNR11 = {2, 6, 7, 8, 10}.
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Sqrt mod p

Proof that |
√

a| = 2 modulo an odd prime p

Let a ∈ QRp.

I It must have a square root b ∈ Z∗p.

I (−b)2 ≡ b2 ≡ a (mod p), so −b ∈
√

a.

I Moreover, b 6≡ −b (mod p) since p ∼| 2b, so |
√

a| ≥ 2.

I Now suppose c ∈
√

a. Then c2 ≡ a ≡ b2 (mod p).

I Hence, p |c2 − b2 = (c − b)(c + b).

I Since p is prime, then either p |(c − b) or p |(c + b) (or both).

I If p |(c − b), then c ≡ b (mod p).

I If p |(c + b), then c ≡ −b (mod p).

I Hence, c = ±b, so
√

a = {b,−b}, and |
√

a| = 2.
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Sqrt mod p

Proof that half the elements of Z∗p are in QRp

I Each b ∈ Z∗p is the square root of exactly one element of QRp.

I The mapping b 7→ b2 mod p is a 2-to-1 mapping from Z∗p to
QRp.

I Therefore, |QRp| = 1
2 |Z
∗
p| as desired.
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