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Zero Knowledge Interactive Proofs (ZKIP)
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Zero knowlege interactive proofs (ZKIP)

A round of the simplified Feige-Fiat-Shamir protocol is an example
of a so-called zero-knowledge interactive proof.

These are protocols where Bob provably learns nothing about
Alice’s secret.

Here, “learns” means computational knowledge: Anything that
Bob could have computed with the help of Alice he could have
computed by himself without Alice’s help.

We now consider zero knowledge proofs in greater detail.
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Cave

The Secret Cave Protocol
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Cave

The secret cave protocol
The secret cave protocol illustrates the fundamental ideas behind
zero knowledge without any reference to number theory or
hardness of computation.

Image a cave with tunnels and doors as shown below.

L
R

C

DR

D

DL
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Cave

Secret cave protocol (cont.)

There are three openings to the cave: L, C , and R.

L and R are blocked by exit doors, like at a movie theater, which
can be opened from the inside but are locked from the outside.
The only way into the cave is through passage C .

The cave itself consists of a U-shaped tunnel that runs between L
and R. There is a locked door D in the middle of this tunnel,
dividing it into a left part and a right part.

A short tunnel from C leads to a pair of doors DL and DR through
which one can enter left and right parts of the cave, respectively.
These doors are also one-way doors that allow passage from C into
either the left or right parts of the cave, but once one passes
through, the door locks behind and one cannot return to C .
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Cave

Alice’s proposition

Alice approaches Bob, tells him that she has a key that opens door
D, and offers to sell it to him.

Bob would really like such a key, as he often goes into the cave to
collect mushrooms and would like easy access to both sides of the
cave without having to return to the surface to get into the other
side.

However, he doesn’t trust Alice that the key really works, and Alice
doesn’t trust him with her key until she gets paid.
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Cave

Their conversation

Bob tells Alice.

“Give me the key so I can go down into the cave and try
it to make sure that it really works.”

Alice retorts,

“I’m not that dumb. If I give you the key and you
disappear into the cave, I’ll probably never see either you
or my key again. Pay me first and then try the key.”

Bob answers,

“If I do that, then you’ll disappear with my money, and
I’m likely to be stuck with a non-working key.”
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Cave

How do they resolve their dilemma?

They think about this problem for awhile, and then Alice suggests,

“Here’s an idea: I’ll enter the cave through door C , go
into the left part of the cave, open D with my key, go
through it into the right part of the cave, and then come
out door R. When you see me come out R, you’ll know
I’ve succeeded in opening the door.”

Bob thinks about this and then asks,

“How do I know you’ll go into the left part of the cave?
Maybe you’ll just go into the right part and come out
door R and never go through D.”
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Cave

Alice’s plan

Alice says,

“OK. I’ll go into either the left or right side of the cave.
You’ll know I’m there because you’ll hear door DL or DR

clank when it closes behind me. You then yell down into
the cave which door you want me to come out—L or
R—and I’ll do so. If I’m on the opposite side from what
you request, then I’ll have no choice but to unlock D in
order to pass through to the other side.”
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Cave

Bob’s hesitation

Bob is beginning to be satisfied, but he hesitates.

“Well, yes, that’s true, but if you’re lucky and happen to
be on the side I call out, then you don’t have to use your
key at all, and I still won’t know that it works.”

Alice answers,

“Well, I might be lucky once, but I surely won’t be lucky
20 times in a row, so I’ll agree to do this 20 times. If I
succeed in coming out the side you request all 20 times,
do you agree to buy my key?”

Bob agrees, and they spend the rest of the afternoon climbing in
and out of the cave and shouting.
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Isomorphism

ZKIP for graph isomorphism
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Isomorphism

Graph isomorphism problem

Two undirected graphs G and H are said to be isomorphic if there
exists a bijection π from vertices of G to vertices of H that
preserves edges.

That is, {x , y} is an edge of G iff {π(x), π(y)} is an edge of H.

No known polynomial time algorithm decides, given two graphs G
and H, whether they are isomorphic, but this problem is also not
known to be NP-hard.

It follows that there is no known polynomial time algorithm for
finding the isomorphism π given two isomorphic graphs G and H.
Why?

CPSC 467b, Lecture 18 14/52



Outline ZKIP PKI Formalizing ZK Full FFS

Isomorphism

A zero-knowledge proof for isomorphism

Now, suppose G0 and G1 are public graphs and Alice knows an
isomorphism π : G0 → G1.

There is a zero knowledge proof whereby Alice can convince Bob
that she knows an isomorphism π from G0 to G1, without revealing
any information about π.

In particular, she can convince Bob that the graphs really are
isomorphic, but Bob cannot turn around and convince Carol of
that fact.
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Isomorphism

Interactive proof of graph isomorphism

Alice Bob

1. Simultaneously choose a
random isomorphic copy H
of G0 and an isomorphism
τ : G0 → H.

H−→
2.

b←− Choose random b ∈ {0, 1}.
3. If b = 0, let σ = τ .

If b = 1, let σ = τ ◦ π−1.
σ−→ Check σ(Gb) = H.
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Isomorphism

Validity of isomorphism IP

The protocol is similar to the simplified Feige-Fiat-Shamir protocol

If both Alice and Bob follow this protocol, Bob’s check always
succeeds.

I When b = 0, Alice send τ in step 3, and Bob checks that τ is
an isomorphism from G0 to H.

I When b = 1, the function σ that Alice computes is an
isomorphism from G1 to H. This is because π−1 is an
isomorphism from G1 to G0 and τ is an isomorphism from G0

to H. Composing them gives an isomorphism from G1 to H,
so again Bob’s check succeeds.
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Isomorphism

Isomorphism IP is zero knowlege
The protocol is zero knowledge (at least informally) because all
Bob learns is a random isomorphic copy H of either G0 or G1 and
the corresponding isomorphism.

This is information that he could have obtained by himself without
Alice’s help.

What convinces him that Alice really knows π is that in order to
repeatedly pass his checks, the graph H of step 1 must be
isomorphic to both G0 and G1.

Moreover, Alice knows isomorphisms σ0 : G0 → H and
σ1 : G1 → H since she can produce them upon demand.

Hence, she also knows an isomorphism π from G0 to G1, since
σ−1

1 ◦ σ0 is such a function.
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Abstraction

FFS authentication and isomorphism IP

We have seen two examples of zero knowledge interactive proofs of
knowledge of a secret.

In the simplified Feige-Fiat-Shamir authentication scheme, Alice’s
secret is a square root of v .

In the graph isomorphism protocol, her secret is the isomorphism π.

In both cases, the protocol has the form that Alice sends Bob a
“commitment” string x , Bob sends a query bit b, and Alice replies
with a response yb.

Bob then checks the triple (x , b, yb) for validity.
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Abstraction

Comparison (continued)

In both protocols, neither triple (x , 0, y0) nor (x , 1, y1) alone give
any information about Alice’s secret, but y0 and y1 can be
combined to reveal her secret.

In the FFS protocol, y1y−1
0 mod n is a square root of v−1.

(Note: Since v−1 has four square roots, the revealed square root might

not be the same as Alice’s secret, but it is equally valid as a means of

impersonating Alice.)

In the graph isomorphism protocol, y−1
1 ◦ y0 is an isomorphism

mapping G0 to G1.
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Abstraction

Another viewpoint

One way to view these protocols is that Alice splits her secret into
two parts, y0 and y1.

By randomization, Alice is able to convince Bob that she really has
(or could produce on demand) both parts, but in doing so, she is
only forced to reveal one of them.

Each part by itself is statistically independent of the secret and
hence gives Bob no information about the secret.

Together, they can be used to recover the secret.
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Abstraction

Secret splitting

This is an example of secret splitting or secret sharing, an
important topic in its own right. We have already seen other
examples of secret sharing.

In the one-time pad cryptosystem, the message m is split into two
parts: the key k are the ciphertext c = m ⊕ k .

Bob, knowing both k and c, recovers m from by computing c ⊕ k.

Assuming k is picked randomly, then both k and c are uniformly
distributed random bit strings, which is why Eve learns nothing
about m from k or c alone.

What’s different with zero knowledge proofs is that Bob has a way
to check the validity of the parts that he gets during the protocol.
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Public Key Infrastructure (PKI) and Trust
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The Big Picture

Much of cryptography is concerned with splitting a piece of
information s into a collection of shares s1, . . . , sr .

Certain subsets of shares allow s to be easily recovered; other
subsets are insufficient to allow any useful information about s to
be easily obtained.

In the simplest form, s is split into two shares a and b. Neither
share alone gives useful information about s, but together they
reveal s.
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Examples of information splitting

I One-time pad: s is broken into a key k and a ciphertext c ,
where |k| = |c | and s = k ⊕ c .

I AES: s is broken into a short key k and a long ciphertext c ,
where s = Dk(c).

I Secret splitting: s is broken into equal-length shares s1 and s2,
where s = s1 ⊕ s2.
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Share distribution

A key problem (pun intended) in any use of cryptography is how
the various parties to a protocol obtain their respective shares.

For conventional symmetric cryptography, this is known as the key
distribution problem.

For public key systems, the public shares are provided through a
public key infrastructure (PKI).
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Desired properties of a PKI

A PKI should allow any user to obtain the correct public key (and
perhaps other information) for a user.

The information provided must be correct.

The user must trust that it is correct.
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Centralized PKI

The first idea for a PKI is a centralized database run by a trusted
3rd party, e.g., the government.

Problems:

I Centralized systems are brittle.

I Difficult to find a single entity that is universally trusted.
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Hierarchy of trust

The most widely used PKI today is based on X.509 certificates and
the hierarchy of trust.

A certificate is a package of information that binds a user to a
public key.

To be trusted, a certificate must be signed by a trusted certificate
authority (CA).

To validate the signature, one must obtain and validate a trusted
certificate of the signing CA.
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Where does trust stop?

The roots of the PKI hierarchy are trusted CA’s that are
well-known.

Your browser is distributed with trusted certificates for the root
CA’s.

Any other certificate can be valided by obtaining a chain of trust
leading to a root certificate.

For this scheme to work, one relies on the CA’s to take reasonable
care not to issue bogus certificates.
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Web of trust

A variant PKI is the web of trust.

Here, the trust relationship is a graph, not a tree.

The basic rule is to trust a certificate if it is signed by one or more
trusted parties.

Anyone can act as a CA, so one must only trust the signatures of
trustworthy signers.
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Formalizing Zero Knowledge
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Computational Knowledge

Computational Knowledge
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Computational Knowledge

What does Bob learn from Alice?

We have seen several examples of zero knowledge proofs but no
careful definition of what it means to be “zero knowledge”.

The intuition that “Bob learns nothing from Alice” surely isn’t
true.

After running the FFS protocol, for example, Bob learns the
quadratic residue x that Alice computed in the first step.

He didn’t know x before, nor did he and Alice know any quadratic
residues in common other than the public number v .

By zero knowledge, we want to capture the notion that Bob learns
nothing that might be useful in turning an intractable computation
into a tractable one.
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Computational Knowledge

A general client process for interacting with Alice
Consider an arbitrary algorithm for performing some computation,
i.e., suppose Mallory is trying to compute some function f (z).

We regard Mallory as a probabilistic Turing machine with input
tape and output tape.

I z is placed on the input tape at the beginning.
I If Mallory halts, the contents of the output tape is the answer.
I Mallory can also play Bob’s role in some zero-knowledge

protocol, say FFS for definiteness.
I During the computation, Mallory can read the number x that

Alice sends at the start of FFS.
I Later, he can send a bit b to Alice.
I Later still, he can read the response y from Alice.
I After that, he computes and produces the answer, f (z).
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Computational Knowledge

A Mallory-simulator

A Mallory-simulator, whom we’ll call Sam, is a program like
Mallory except he is not on the internet and can’t talk to Alice.

Alice’s protocol is zero knowledge if for every Mallory, there is a
Mallory-simulator Sam that computes the same random function
f (z) as Mallory.

In other words, whatever Mallory does with the help of Alice, Sam
can do alone.
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Computational Knowledge

The logical connection with knowledge

If Mallory computes some function with Alice’s help (such as
writing a square root of v to the output tape), then Sam can also
do that without Alice’s help.

Under the assumption that taking square roots is hard, Sam
couldn’t do that; hence Mallory also couldn’t do that, even after
talking with Alice.

We conclude that Alice doesn’t release information that would help
Mallory to compute her secret; hence her secret is secure.
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Computational Knowledge

Constructing a simulator

To show a particular interactive protocol is zero knowledge, it is
necessary to show how to construct Sam for an arbitrary program
Mallory.

Here’s a sketch of how to generate a triple (x , b, y) for the FFS
protocol.

b = 0: Sam generates x and y the same way Alice does—by
taking x = r2 mod n and y = r mod n.

b = 1: Sam chooses y at random and computes
x = y2v mod n.

What he can’t do (without knowing Alice’s secret) is to generate
both triples for the same value x .
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Computational Knowledge

A simulator for FFS
Here’s the code for Sam:

1. Simulate Mallory until he requests a value from Alice.

2. Save Mallory’s state as Q.

3. Choose a random value b̂ ∈ {0, 1}.
4. Generate a valid random triple (x , b̂, y).

5. Pretend that Alice sent x to Mallory.

6. Continue simulating Mallory until he is about to send a value
b to Alice.

7. If b 6= b̂, reset Mallory to state Q and return to step 3.

8. Otherwise, continue simulating Mallory until he requests
another value from Alice. Pretend that Alice sent him y and
continue.

9. Continue simulating Mallory until he halts.
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Computational Knowledge

Properties of the simulator

The probability that b = b̂ in step 7 is 1/2; hence, the expected
number of times Sam executes lines 3–7 is only 2.

Sam outputs the same answers as Mallory with the same
probability distribution. Requires some work to show.

Hence, the FFS protocol is zero knowledge.

Note that this proof depends on Sam’s ability to generate triples of
both kinds without knowing Alice’s secret.
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Composing ZK

Composing Zero-Knowledge Proofs
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Composing ZK

Serial composition

One round of the simplified FFS protocol has probability 0.5 of
error. That is, Mallory can fool Bob half the time.

This is unacceptably high for most applications.

Repeating the protocol t times reduces error probability to 1/2t .

Taking t = 20, for example, reduces the probability of error to less
than on in a million.

The downside of such serial repetition is that it also requires t
round trip messages between Alice and Bob (plus a final message
from Alice to Bob).
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Composing ZK

Parallel composition of zero-knowledge proofs

One could run t executions of the protocol in parallel.

Let (xi , bi , yi ) be the messages exchanged during the i th execution
of the simplified FFS protocol, 1 ≤ i ≤ t.

In a parallel execution,

I Alice sends (x1, . . . , xt) to Bob,

I Bob sends (b1, . . . , bt) to Alice,

I Alice sends (y1, . . . , yt) to Bob,

I Bob checks the t sets of values he has received and accepts
only if all checks pass.
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Composing ZK

Simulation proof does not extend to parallel execution

A parallel execution is certainly attractive in practice, for it reduces
the number of round-trip messages to only 11

2 .

The downside is that the resulting protocol may not be zero
knowledge by our definition.

Intuitively, the important difference is that Bob gets to know all of
the xi ’s before choosing the bi ’s.

CPSC 467b, Lecture 18 44/52



Outline ZKIP PKI Formalizing ZK Full FFS

Composing ZK

Problem extending the simulator to the parallel case

While it seems implausible that this would actually help a cheating
Bob to compromise Alice secret, the simulation proof used to show
that a protocol is zero knowledge no longer works.

To extend the simulator construction to the parallel composition:

I First Sam would have to guess (b̂1, . . . b̂t).

I He would construct the xi ’s and yi ’s as before.

I When Mallory’s program reaches the point that Mallory
generates the bi ’s, the chance is very high that Sam’s initial
guesses were wrong and he will be forced to start over again.
Indeed, the probability that all t initial guesses are correct is
only 1/2t .
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Full Feige-Fiat-Shamir Authentication

Protocol
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Full FFS overview
The full Feige-Fiat-Shamir Authentication Protocol combines ideas
of serial and parallel execution to get a protocol that exhibits some
of the properties of both.

A Blum prime is a prime p such that p ≡ 3 (mod 4).

A Blum integer is a number n = pq, where p and q are Blum
primes.

If p is a Blum prime, then −1 ∈ QNRp, so
(
−1
p

)
= −1. This

follows from the Euler criterion, since p−1
2 is odd, so

(−1)
p−1

2 =

(
−1

p

)
= −1.

If n is a Blum integer, then −1 ∈ QNRn but
(−1

n

)
= 1.
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Square roots of Blum integers

Let n = pq be a Blum integer and a ∈ QRn. Exactly one of a’s
four square roots modulo n is a quadratic residue.

Consider Z∗
p and Z∗

q. a ∈ QRp and a ∈ QRq.

Let {b,−b} =
√

a (mod p) and apply the Euler Criterion to both.
Since

(−1)(p−1)/2 = −1 and b(p−1)/2 ∈ {±1},

then either b(p−1)/2 = 1 or (−b)(p−1)/2 = 1.
Hence, either b ∈ QRp or −b ∈ QRp. Call that number bp.

Similarly, one of the square roots of a (mod q) is in QRq, say bq.

Applying the Chinese Remainder Theorem, it follows that exactly
one of a’s four square roots modulo n is a quadratic residue.
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Full FFS key generation

Here’s how Alice generates the public and private keys of the full
FFS protocol.

I She chooses a Blum integer n.

I She chooses random numbers s1, . . . , sk ∈ Z∗
n and random bits

c1, . . . , ck ∈ {0, 1}.
I She computes vi = (−1)ci s−2

i mod n, for i = 1, . . . , k.

I She makes (n, v1, . . . , vk) public and keeps (n, s1, . . . , sk)
private.

Notice that every vi is either a quadratic residue or the negation of
a quadratic residue.

It is easily shown that all of the vi have Jacobi symbol 1 modulo n.
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One round of the full FFS authentication protocol.
A round of the protocol itself is shown below. The protocol is
repeated for a total of t rounds.

Alice Bob

1. Choose random
r ∈ Zn−{0}, c ∈ {0, 1}.
x = (−1)c r2 mod n

x−→.
2. Choose random

b1,...,bk←− b1, . . . , bk ∈ {0, 1}.
3. y = rsb1

1 · · · s
bk
k mod n.

y−→
4. z = y2vb1

1 · · · v
bk
k mod n.

Check z ≡ ±x (mod n)
and z 6= 0.
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Correctness of full FFS authentication protocol
When both Alice and Bob are honest, Bob computes

z = r2(s2b1
1 · · · s2bk

k )(vb1
1 · · · v

bk
k ) mod n.

Since vi = (−1)ci s−2
k , it follows that s2

i vi = (−1)ci . Hence,

z ≡ r2(s2
1v1)b1 · · · (s2

k vk)bk

≡ x(−1)c(−1)c1b1 · · · (−1)ckbk ≡ ±x (mod n).

Moreover, since x 6= 0, then also z 6= 0. Hence, Bob’s checks
succeed.

The chance that a bad Alice can fool Bob is only 1/2kt . The
authors recommend k = 5 and t = 4 for a failure probability of
1/220.
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Zero knowledge property

Theorem
The full FFS protocol is a zero knowledge proof of knowledge of
the sj for k = O(log log n) and t = O(log n).

Proof.
See U. Fiege, A. Fiat,and A. Shamir, Zero knowledge proofs of
identity, ACM Symp. on Theory of Computing, 1987,
210–217.
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