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Eliminating interaction from interactive proofs

Going from serial composition to parallel composition reduces
communication overhead but may sacrifice of zero knowledge.

Rather surprisingly, one can go a step further and eliminate the
interaction from interactive proofs altogether.

The idea is that Alice will provide Bob with a trace of a pretend
execution of an interactive proof of herself interacting with Bob.

Bob will check that the trace is a valid execution of the protocol.

Of course, that isn’t enough to convince Bob that Alice isn’t
cheating, for how does he ensure that Alice simulates random
query bits bi for him, and how does he ensure that Alice chooses
her xi ’s before knowing the bi ’s?
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Keeping Alice from cheating

The solution is to make the bi ’s depend in an unpredictable way on
the xi ’s.

We base the bi ’s on the value of a “random-looking” hash function
H applied to the concatenation of the xi ’s.
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A non-interacting version of FFS

Here’s how it works in, say, the parallel composition of t copies of
the simplified FFS protocol.

I The honest Alice chooses x1, . . . , xt according to the protocol.

I Next she chooses b1 . . . bt to be the first t bits of H(x1 · · · xt).

I Finally, she computes y1, . . . , yt , again according to the
protocol.

I She sends Bob a single message consisting of
x1, . . . , xt , y1, . . . , yt .

I Bob computes b1 . . . bt to be the first t bits of H(x1 · · · xt)
and then performs each of the t checks of the FFS protocol,
accepting Alice’s proof only if all checks succeed.
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Why can’t Alice cheat?

A cheating Alice can choose yi arbitrarily and then compute a valid
xi for a given bi .

If she chooses the bi ’s first, the xi ’s she computes are unlikely to
hash to a string that begins with b1 . . . bt .1

1This assumes that the hash function “looks like” a random function. We
have already seen artificial examples of hash functions that do not have this
property.
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Why can’t Alice cheat?

If some bi does not agree with the corresponding bit of the hash
function, she can either change bi and try to find a new yi that
works with the given xi , or she can change xi to try to get the i th

bit of the hash value to change.

However, neither of these approaches works. The former may
require knowledge of Alice’s secret; the latter will cause the bits of
the hash function to change “randomly”.
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Brute force cheating
One way Alice can attempt to cheat is to use a brute-force attack.

For example, she could generate all of the xi ’s to be squares of the
yi with the hopes that the hash of the xi ’s will make all bi = 0.

But that is likely to require 2t−1 attempts on average.

If t is chosen large enough (say t = 80), the number of trials Alice
would have to do in order to have a significant probability of
success is prohibitive.

Of course, these observations are not a proof that Alice can’t
cheat; only that the obvious strategies don’t work.

Nevertheless, it is plausible that a cheating Alice not knowing
Alice’s secret, really wouldn’t be able to find a valid such
“non-interactive interactive proof”.
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Contrast with true interactive proofs

With a true zero-knowledge interactive proof, Bob does not learn
anything about Alice’s secret, nor can Bob impersonate Alice to
Carol after Alice has authenticated herself to Bob.

On the other hand, if Alice sends Bob a valid non-interactive
proof, then Bob can in turn send it on to Carol.

Even though Bob couldn’t have produced it on his own, it is still
valid.

So here we have the curious situation that Alice needs her secret in
order to produce the non-interactive proof string π, and Bob can’t
learn Alice’s secret from π, but now Bob can use π itself in an
attempt to impersonate Alice to Carol.
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FFS Sigs

Feige-Fiat-Shamir Signatures
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FFS Sigs

Similarity between signature scheme and non-interactive IP

A signature scheme has a lot in common with the “non-interactive
interactive” proofs.

In both cases, there is only a one-way communication from Alice
to Bob.

I Alice signs a message and sends it to Bob.

I Bob verifies it without further interaction with Alice.

I If Bob hands the message to Carol, then Carol can also verify
that it was signed by Alice.

Not surprisingly, the “non-interactive interactive proof” ideas can
be used to turn the Feige-Fiat-Shamir authentication protocol into
a signature scheme.
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FFS Sigs

Signature scheme from non-interactive IP

We present a signature scheme based on a slightly simplified
version of the full FFS authentication protocol in which all of the
vi ’s in the public key are quadratic residues, and n is not required
to be a Blum integer, only a product of two distinct odd primes.

The public verification key is (n, v1, . . . , vk), and the private
signing key is (n, s1, . . . , sk), where vj = s−2

j mod n (1 ≤ j ≤ k).
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FFS Sigs

Signing algorithm
To sign a message m, Alice simulates t parallel rounds of FFS.

I She first chooses random r1, . . . , rt ∈ Zn − {0} and computes

xi = r2
i mod n (1 ≤ i ≤ t).

I She computes u = H(mx1 · · · xt), where H is a suitable
cryptographic hash function.

I She chooses b1,1, . . . , bt,k according to the first tk bits of u:

bi ,j = u(i−1)∗k+j (1 ≤ i ≤ t, 1 ≤ j ≤ k).

I Finally, she computes

yi = ri s
bi,1

1 · · · sbi,k

k mod n (1 ≤ i ≤ t).

The signature is
s = (b1,1, . . . , bt,k , y1, . . . , yt).
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FFS Sigs

Verification algorithm

To verify the signed message (m, s), Bob computes

zi = y2
i v

bi,1

1 · · · vbi,k

k mod n (1 ≤ i ≤ t).

Bob checks that each zi 6= 0 and that b1,1, . . . , bt,k are equal to
the first tk bits of H(mz1 · · · zt).

When both Alice and Bob are honest, it is easily verified that
zi = xi (1 ≤ i ≤ t). In that case, Bob’s checks all succeed since
xi 6= 0 and H(mz1 · · · zt) = H(mx1 · · · xt).
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FFS Sigs

Forgery

To forge Alice’s signature, an impostor must find bi ,j ’s and yi ’s
that satisfy the equation

b1,1 . . . bt,k � H(m(y2
1 v

b1,1

1 · · · vb1,k

k mod n)

. . . (y2
t v

bt,1

1 · · · vbt,k

k mod n)).

where “�” means string prefix. It is not obvious how to solve such
an equation without knowing a square root of each of the v−1

i ’s
and following essentially Alice’s procedure.
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Pseudorandom Sequence Generation
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Pseudorandom sequence generators revisited

Cryptographically strong pseudorandom sequence generators were
introduced in Lecture 6 in connection with stream ciphers.

We next define carefully what it means for a pseudorandom
sequence generator (PRSG) to be cryptographically strong.

We then show how to build one that is provably secure. It is based
on the quadratic residuosity assumption (Lecture 17) on which the
Goldwasser-Micali probabilistic cryptosystem is based.
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Desired properties of a PRSG
A pseudorandom sequence generator (PRSG) maps a “short”
random seed to a “long” pseudorandom bit string.

We want a PRSG to be cryptographically strong, that is, it must
be difficult to correctly predict any generated bit, even knowing all
of the other bits of the output sequence.

In particular, it must also be difficult to find the seed given the
output sequence, since otherwise the whole sequence is easily
generated.

Thus, a PRSG is a one-way function and more.

Note: While a hash function might generate hash values of the form yy
and still be strongly collision-free, such a function could not be a PRSG
since it would be possible to predict the second half of the output
knowing the first half.
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Expansion amount

I am being intentionally vague about how much expansion we
expect from a PRSG that maps a “short” seed to a “long”
pseudorandom sequence.

Intuitively, “short” is a length like we use for cryptographic
keys—long enough to prevent brute-force attacks, but generally
much shorter than the data we want to deal with. Typical seed
lengths might range from 128 to 2048.

By “long”, we mean much larger sizes, perhaps thousands or even
millions of bits, but polynomially related to the seed length.
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Incremental generators

In practice, the output length is usually variable. We can request
as many output bits from the generator as we like (within limits),
and it will deliver them.

In this case, “long” refers to the maximum number of bits that can
be delivered while still maintaining security.

Also, in practice, the bits are generally delivered a few at a time
rather than all at once, so we don’t need to announce in advance
how many bits we want but can go back as needed to get more.
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Notation for PRSG’s

In a little more detail, a pseudorandom sequence generator G is a
function from a domain of seeds S to a domain of strings X .

We will generally assume that all of the seeds in S have the same
length n and that X is the set of all binary strings of length
` = `(n), where `(·) is a polynomial and n� `(n).

`(·) is called the expansion factor of G .
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What does it mean for a string to look random?

Intuitively, we want the strings G (s) to “look random”.
But what does it mean to “look random”?

Chaitin and Kolmogorov defined a string to be “random” if its
shortest description is almost as long as the string itself.

By this definition, most strings are random by a simple counting
argument.

For example, 011011011011011011011011011 is easily described as
the pattern 011 repeated 9 times. On the other hand,
101110100010100101001000001 has no obvious short description.

While philosophically very interesting, these notions are somewhat
different than the statistical notions that most people mean by
randomness and do not seem to be useful for cryptography.
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Randomness based on probability theory

We take a different tack.

We assume that the seeds are chosen uniformly at random from S.

Let S be a uniformly distributed random variable over S.

Then X ∈ X is a derived random variable defined by X = G (S).

For x ∈ X ,

Pr[X = x] =
|{s ∈ S | G(s) = x}|

|S|
.

Thus, Pr[X = x] is the probability of obtaining x as the output of
the PRSG for a randomly chosen seed.
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Randomness amplifier

We think of G (·) as a randomness amplifier.

We start with a short truly random seed and obtain a long string
that “looks like” a random string, even though we know it’s not
uniformly distributed.

In fact, the distribution G (S) is very much non-uniform.

Because |S| ≤ 2n, |X | = 2`, and n� `, most strings in X are not
in the range of G and hence have probability 0.

For the uniform distribution U over X , all strings have the same
non-zero probability 1/2`.

U is what we usually mean by a truly random variable on `-bit
strings.
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Computational indistinguishability

We have just seen that the probability distributions of X = G (S)
and U are quite different.

Nevertheless, it may be the case that all feasible probabilistic
algorithms behave essentially the same whether given a sample
chosen according to X or a sample chosen according to U.

If that is the case, we say that X and U are computationally
indistinguishable and that G is a cryptographically strong
pseudorandom sequence generator.

CPSC 467b, Lecture 19 26/41



Outline Non-I IP PRSG Quadratic residues

Some implications of computational indistinguishability
Before going further, let me describe some functions G for which
G (S) is readily distinguished from U.

Suppose every string x = G (s) has the form b1b1b2b2b3b3 . . ., for
example 0011111100001100110000. . . .

Algorithm A(x) outputs “G” if x is of the special form above, and
it outputs “U”otherwise.

A will always output “G” for inputs from G (S). For inputs from U,
A will output “G” with probability only

2`/2

2`
=

1

2`/2
.

How many strings of length ` have the special form above?
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Judges
Formally, a judge is a probabilistic polynomial-time algorithm J
that takes an `-bit input string x and outputs a single bit b.

Thus, it defines a random function from X to {0, 1}.

This means that for every input x , the output is 1 with some
probability px , and the output is 0 with probability 1− px .

If the input string is a random variable X , then the probability that
the output is 1 is the weighted sum of px over all possible inputs x ,
where the weight is the probability Pr[X = x] of input x occurring.

Thus, the output value is itself a random variable J(X ), where

Pr[J(X) = 1] =
∑
x∈X

Pr[X = x] · px.
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Formal definition of indistinguishability

Two random variables X and Y are ε-indistinguishable by judge J if

|Pr[J(X) = 1]− Pr[J(Y) = 1]| < ε.

Intuitively, we say that G is cryptographically strong if G (S) and U
are ε-indistinguishable for suitably small ε by all judges that do not
run for too long.

A careful mathematical treatment of the concept of
indistinguishability must relate the length parameters n and `, the
error parameter ε, and the allowed running time of the judges

Further formal details may be found in Goldwasser and Bellare and
in handout 9.
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Quadratic Residues Revisited
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Legendre

Legendre symbol
Let p be an odd prime, a an integer. The Legendre symbol

(
a
p

)
is

a number in {−1, 0,+1}, defined as follows:(
a

p

)
=


+1 if a is a non-trivial quadratic residue modulo p

0 if a ≡ 0 (mod p)
−1 if a is not a quadratic residue modulo p

By the Euler Criterion, we have

Theorem
Let p be an odd prime. Then(

a

p

)
≡ a( p−1

2 ) (mod p)

Note that this theorem holds even when p |a.
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Legendre

Properties of the Legendre symbol

The Legendre symbol satisfies the following multiplicative property:

Fact
Let p be an odd prime. Then(

a1a2

p

)
=

(
a1

p

) (
a2

p

)

Not surprisingly, if a1 and a2 are both non-trivial quadratic
residues, then so is a1a2. Hence, the fact holds when(

a1

p

)
=

(
a2

p

)
= 1.
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Legendre

Product of two non-residues

Suppose a1 6∈ QRp, a2 6∈ QRp. The above fact asserts that the
product a1a2 is a quadratic residue since(

a1a2

p

)
=

(
a1

p

) (
a2

p

)
= (−1)(−1) = 1.

Here’s why.

I Let g be a primitive root of p.

I Write a1 ≡ gk1 (mod p) and a2 ≡ gk2 (mod p).

I Both k1 and k2 are odd since a1, a2 6∈ QRp.

I But then k1 + k2 is even.

I Hence, g (k1+k2)/2 is a square root of a1a2 ≡ gk1+k2 (mod p),
so a1a2 is a quadratic residue.
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Jacobi

The Jacobi symbol
The Jacobi symbol extends the Legendre symbol to the case where
the “denominator” is an arbitrary odd positive number n.

Let n be an odd positive integer with prime factorization
∏k

i=1 pi
ei .

We define the Jacobi symbol by(a

n

)
=

k∏
i=1

(
a

pi

) ei

(1)

The symbol on the left is the Jacobi symbol, and the symbol on
the right is the Legendre symbol.

(By convention, this product is 1 when k = 0, so
(

a
1

)
= 1.)

The Jacobi symbol extends the Legendre symbol since the two
definitions coincide when n is an odd prime.
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Jacobi

Meaning of Jacobi symbol

What does the Jacobi symbol mean when n is not prime?

I If
(

a
n

)
= +1, a might or might not be a quadratic residue.

I If
(

a
n

)
= 0, then gcd(a, n) 6= 1.

I If
(

a
n

)
= −1 then a is definitely not a quadratic residue.
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Jacobi

Jacobi symbol = +1 for n = pq

Let n = pq for p, q distinct odd primes. Since(a

n

)
=

(
a

p

) (
a

q

)
(2)

there are two cases that result in
(

a
n

)
= 1:

1.
(

a
p

)
=
(

a
q

)
= +1, or

2.
(

a
p

)
=
(

a
q

)
= −1.
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Jacobi

Case of both Jacobi symbols = +1

If
(

a
p

)
=
(

a
q

)
= +1, then a ∈ QRp ∩QRq = Q11

n .

It follows by the Chinese Remainder Theorem that a ∈ QRn.

This fact was implicitly used in the proof sketch that |
√

a| = 4.
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Jacobi

Case of both Jacobi symbols = −1

If
(

a
p

)
=
(

a
q

)
= −1, then a ∈ QNRp ∩QNRq = Q00

n .

In this case, a is not a quadratic residue modulo n.

Such numbers a are sometimes called “pseudo-squares” since they
have Jacobi symbol 1 but are not quadratic residues.
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Identities

Computing the Jacobi symbol

The Jacobi symbol
(

a
n

)
is easily computed from its definition

(equation 1) and the Euler Criterion, given the factorization of n.

Similarly, gcd(u, v) is easily computed without resort to the
Euclidean algorithm given the factorizations of u and v .

The remarkable fact about the Euclidean algorithm is that it lets
us compute gcd(u, v) efficiently, without knowing the factors of u
and v .

A similar algorithm allows us to compute the Jacobi symbol
(

a
n

)
efficiently, without knowing the factorization of a or n.
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Identities

Identities involving the Jacobi symbol

The algorithm is based on identities satisfied by the Jacobi symbol:

1.
(

0
n

)
=

{
1 if n = 1
0 if n 6= 1;

2.
(

2
n

)
=

{
1 if n ≡ ±1 (mod 8)
−1 if n ≡ ±3 (mod 8);

3.
(

a1
n

)
=
(

a2
n

)
if a1 ≡ a2 (mod n);

4.
(

2a
n

)
=
(

2
n

)
·
(

a
n

)
;

5.
(

a
n

)
=

{ (
n
a

)
if a, n odd and ¬(a ≡ n ≡ 3 (mod 4))

−
(

n
a

)
if a, n odd and a ≡ n ≡ 3 (mod 4).
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Identities

A recursive algorithm for computing Jacobi symbol

/* Precondition: a, n >= 0; n is odd */
int jacobi(int a, int n) {
if (a == 0) /* identity 1 */
return (n==1) ? 1 : 0;

if (a == 2) /* identity 2 */
switch (n%8) {
case 1: case 7: return 1;
case 3: case 5: return -1;
}

if ( a >= n ) /* identity 3 */
return jacobi(a%n, n);

if (a%2 == 0) /* identity 4 */
return jacobi(2,n)*jacobi(a/2, n);

/* a is odd */ /* identity 5 */
return (a%4 == 3 && n%4 == 3) ? -jacobi(n,a) : jacobi(n,a);

}
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