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BBS Pseudorandom Sequence Generator
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A cryptographically strong PRSG

We present a cryptographically strong pseudorandom sequence
generator due to Blum, Blum, and Shub (BBS).

BBS is defined by a Blum integer n = pq and an integer `.

It maps strings in Z∗n to strings in {0, 1}`.

Given a seed s0 ∈ Z∗n, we define a sequence s1, s2, s3, . . . , s`, where
si = s2

i−1 mod n for i = 1, . . . , `.

The `-bit output sequence BBS(s0) is b1, b2, b3, . . . , b` , where
bi = lsb(si ) is the least significant bit of si .
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Security of BBS

In the next several slides, we show that BBS is secure.

The proof reduces the problem of predicting the output of BBS to
the quadratic residue problem.

We finally show that if there is a judge that successfully
distinguishes BBS(S) from U, then there is a feasible method for
distinguishing quadratic residues from non-residues with Jacobi
symbol 1.
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Recall QR assumption and Blum integers

The security of BBS is based on the assumed difficulty of
determining, for a given a ∈ Z∗n with Jacobi symbol 1, whether or
not a is a quadratic residue, i.e., whether or not a ∈ QRn.

Recall from Lecture 18 that a Blum prime is a prime p ≡ 3
(mod 4), and a Blum integer is a number n = pq, where p and q
are distinct Blum primes.

Also, Blum primes and Blum integers have the important property
that every quadratic residue a has exactly one square root y which
is itself a quadratic residue.

Call such a y the principal square root of a and denote it by
√

a
(mod n) or simply by

√
a when it is clear that mod n is intended.
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Blum integers and the Jacobi symbol

Fact
Let n be a Blum integer and a ∈ QRn. Then

(
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n

)
=
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n

)
= 1.

Proof.
This follows from the fact that if a is a quadratic residue modulo a
Blum prime, then −a is a quadratic non-residue. Hence,(
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Blum integers and the least significant bit

The low-order bits of x mod n and (−x) mod n always differ when
n is odd.

Let lsb(x) = (x mod 2) be the least significant bit of integer x .

Fact
If n is odd, then lsb(x mod n)⊕ lsb((−x) mod n) = 1.
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First-bit prediction

A first-bit predictor with advantage ε is a probabilistic polynomial
time algorithm A that, given b2, . . . , b`, correctly predicts b1 with
probability at least 1/2 + ε.

This is not sufficient to establish that the pseudorandom sequence
BBS(S) is indistinguishable from the uniform random sequence U,
but if it did not hold, there certainly would exist a distinguishing
judge.

Namely, the judge that outputs 1 if b1 = A(b2, . . . , b`) and 0
otherwise would output 1 with probability greater than 1/2 + ε in
the case that the sequence came from BBS(S) and would output 1
with probability exactly 1/2 in the case that the sequence was truly
random.
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BBS has no first-bit predictor under the QR assumption

If BBS has a first-bit predictor A with advantage ε, then there is a
probabilistic polynomial time algorithm Q for testing quadratic
residuosity with the same accuracy.

Thus, if quadratic-residue-testing is “hard”, then so is first-bit
prediction for BBS.

Theorem
Let A be a first-bit predictor for BBS(S) with advantage ε. Then
we can find an algorithm Q for testing whether a number x with
Jacobi symbol 1 is a quadratic residue, and Q will be correct with
probability at least 1/2 + ε.
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Construction of Q

Assume that A predicts b1 given b2, . . . , b`.

Algorithm Q(x) tests whether or not a number x with Jacobi
symbol 1 is a quadratic residue modulo n.

It outputs 1 to mean x ∈ QRn and 0 to mean x 6∈ QRn.

To Q(x):
1. Let ŝ2 = x2 mod n.
2. Let ŝi = ŝ2

i−1 mod n, for i = 3, . . . , `.

3. Let b̂1 = lsb(x).

4. Let b̂i = lsb(ŝi ), for i = 2, . . . , `.

5. Let c = A(b̂2, . . . , b̂`).

6. If c = b̂1 then output 1; else output 0.
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Why Q works
Since

(
x
n

)
= 1, then either x or −x is a quadratic residue. Let s0

be the principal square root of x or −x . Let s1, . . . , s` be the state
sequence and b1, . . . , b` the corresponding output bits of BBS(s0).

We have two cases.

Case 1: x ∈ QRn. Then s1 = x , so the state sequence of BBS(s0)
is

s1, s2, . . . , s` = x , ŝ2, . . . , ŝ`,

and the corresponding output sequence is

b1, b2, . . . , b` = b̂1, b̂2, . . . , b̂`.

Since b̂1 = b1, Q(x) correctly outputs 1 whenever A correctly
predicts b1. This happens with probability at least 1/2 + ε.
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Why Q works (cont.)

Case 2: x ∈ QNRn, so −x ∈ QRn. Then s1 = −x , so the state
sequence of BBS(s0) is

s1, s2, . . . , s` = −x , ŝ2, . . . , ŝ`,

and the corresponding output sequence is

b1, b2, . . . , b` = ¬b̂1, b̂2, . . . , b̂`.

Since b̂1 = ¬b1, Q(x) correctly outputs 0 whenever A correctly
predicts b1. This happens with probability at least 1/2 + ε.
In both cases, Q(x) gives the correct output with probability at
least 1/2 + ε.
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Bit-Prediction
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Bit-prediction and statistical independence

One important property of the uniform distribution U on
bit-strings b1, . . . , b` is that the individual bits are statistically
independent from each other.

This means that the probability that a particular bit bi = 1 is
unaffected by the values of the other bits in the sequence.

Thus, any algorithm that attempts to predict bi , even knowing
other bits of the sequence, will be correct only 1/2 of the time.

We now translate this property of unpredictability to
pseudorandom sequences.
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Next-bit prediction
First-bit prediction seems rather uninteresting because
pseudorandom bits are usually generated in order.

However, we would like it to be difficult to predict the next bit
given the bits that came before.

Algorithm A is an ε-next-bit predictor for bit i if

Pr[A(b1, . . . ,bi−1) = bi] ≥
1
2

+ ε

where (b1, . . . , bi ) = Gi (S).

As before, S is uniformly distributed over S, G (S) is a random
variable over the output strings of G , and Gi (S) is the
corresponding random variable on the length-i prefixes of G (S).
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Next-bit prediction and indistinguishability

Next-bit prediction is closely related to indistinguishability.

Roughly speaking, G (S) has a next-bit predictor for some bit i iff
G (S) is distinguishable from U.

The precise definitions under which this theorem is true are subtle,
for one must quantify both the amount of time the judge and
next-bit predictor algorithms are permitted to run as well as how
much better than chance the judgments or predictions must be in
order to be considered a successful judge or next-bit predictor.

We defer the mathematics for now and focus instead on the
intuitive concepts that underlie this theorem.
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Building a judge from a next-bit predictor

Let A be an ε-next-bit predictor for G for some bit i .

Here’s how to build a judge J that distinguishes G (S) from U with
advantage ε.

I J, given a sample x drawn from either G (S) or from U, runs
A(x) to produce b̂i .

I If b̂i = bi , then J outputs 1.

I Otherwise, J outputs 0.
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The advantage of J

For samples from G (S), the judge will output 1 with the same
probability that A successfully predicts bit bi , which is at least
1/2 + ε.

For sequences drawn from U, the judge will output 1 with
probability exactly 1/2.

Hence, the judge distinguishes G (S) from U with advantage ε.

It follows that no cryptographically strong PRSG can have an
ε-next-bit predictor.

In other words, no algorithm that attempts to predict the next bit
can have more than a “small” advantage ε over chance.
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Previous-bit prediction
Previous-bit prediction, while perhaps less natural, is analogous to
next-bit prediction.

An ε-previous-bit predictor for bit i is a probabilistic polynomial
time algorithm A that, given bits bi+1, . . . , b`, correctly predicts bi

with probability at least 1/2 + ε.

As with next-bit predictors, if G (S) has a previous-bit predictor for
some bit bj , then some judge distinguishes G (S) from U.

Again, I am being vague with the exact conditions under which
this is true.

Hence, G (S) has an ε-next-bit predictor for some bit i if and only
if it has an ε′-previous-bit predictor for some bit j (where ε and ε′

are related but not necessarily equal).
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Special case of ` = 2
To give some intuition into why such a fact might be true, we look
at the special case of ` = 2, that is, of 2-bit sequences.

The probability distribution G (S) can be described by four
probabilities

pu,v = Pr[b1 = u ∧ b2 = v], where u, v ∈ {0, 1}.

Written in tabular form, we have

b2

b1

0 1

0 p0,0 p0,1

1 p1,0 p1,1
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Bit prediction when ` = 2

We describe a deterministic algorithm A(v) for predicting b1 given
b2 = v . A(v) predicts b1 = 0 if p0,v > p1,v , and it predicts b1 = 1
if p0,v ≤ p1,v .

In other words, the algorithm chooses the value for b1 that is most
likely given that b2 = v .

Theorem
If A is an ε-previous-bit predictor for b1, then A is an ε-next-bit
predictor for either b1 or b2.
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Proof that A is a next-bit predictor

Assume A is an ε-previous-bit predictor for b1, so A correctly
predicts b1 given b2 with probability ≥ 1/2 + ε.

We show that A is an ε-next-bit predictor for either b1 or b2.

Let a(v) be the value predicted by A(v) for v ∈ {0, 1}.

We have two cases:

Case 1: a(0) = a(1). Then algorithm A does not depend on v ,
that is, it makes the same prediction regardless of the value of v .

Thus, A(0) correctly predicts b1 with probability at least 1/2 + ε.
(This means that Pr[b1 = A(0)] ≥ 1/2 + ε.)

It follows that A is an ε-next-bit predictor for b1.
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Proof that A is a next-bit predictor (cont.)
Case 2: a(0) 6= a(1). The probability that A(v) correctly predicts
b1 given b2 = v is

Pr[b1 = a(v) | b2 = v] =
Pr[b1 = a(v) ∧ b2 = v]

Pr[b2 = v]
=

pa(v),v

Pr[b2 = v]

The overall probability that A(b2) is correct for b1 is the average of
the conditional probabilities for v = 0 and v = 1, weighted by the
probability that b2 = v . Thus,

Pr[A(b2) is correct for b1]

=
∑

v∈{0,1}

Pr[b1 = a(v) | b2 = v] · Pr[b2 = v]

=
∑

v∈{0,1}

pa(v),v = pa(0),0 + pa(1),1
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Proof that A is a next-bit predictor (cont.)
Similarly, using A to predict b2 given b1 yields

Pr[A(b1) is correct for b2]

=
∑

v∈{0,1}

Pr[b2 = a(u) | b1 = u] · Pr[b1 = u]

=
∑

v∈{0,1}

pu,a(u) = p0,a(0) + p1,a(1)

We show that

pa(0),0 + pa(1),1 = p0,a(0) + p1,a(1)

when a(0) 6= a(1). It follows that

Pr[A(b1) is correct for b2] = Pr[A(b2) is correct for b1],

so A is an ε-next-bit predictor for b2.
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Proof that A is a next-bit predictor (cont.)

Since a(0) 6= a(1), the function a(·) is one-to-one and onto, so
either a(v) = v for v ∈ {0, 1}, or a(v) = ¬v for v ∈ {0, 1}.

That is, a(·) is either the identity or the complement function.
Hence, either

pa(0),0 + pa(1),1 = p0,0 + p1,1 = p0,a(0) + p1,a(1)

or
pa(0),0 + pa(1),1 = p1,0 + p0,1 = p0,a(0) + p1,a(1)

as desired. Hence, A is an ε-next-bit predictor for b2.

Combining the two cases, we conclude that A is an ε-next-bit
predictor for either b1 or b2, proving the theorem.

CPSC 467b, Lecture 20 26/50



Outline BBS Bit-prediction Secret splitting Shamir’s scheme

Summary of results
We have just seen how to construct a next-bit predictor from a
previous-bit predictor, and we’ve also seen how to construct a
judge from a next-bit predictor.

The most general bit-prediction problem is to predict the i th bit of
the sequence given all other bits. An algorithm that can do this
with advantage ε is said to be an ε-i th-bit predictor for G .

It’s easy to transform an ε-next-bit predictor for bi into an ε-i th-bit
predictor.

It’s also easy to build a judge with advantage ε from an ε-i th-bit
predictor.

To close the loop, one can build an ε′-next-bit predictor for some
bit i and some ε′ given a judge with advantage ε.
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Bit-prediction given a judge
We sketch how to build a next-bit predictor given a judge.
The construction is based on interpolation between U and G (S).

u1 u2 u3 . . . ui−1 ui ui+1 . . . u`

b1 u2 u3 . . . ui−1 ui ui+1 . . . u`

. . . . . .
b1 b2 b3 . . . bi−1 ui ui+1 . . . u`

b1 b2 b3 . . . bi−1 bi ui+1 . . . u`

. . . . . .
b1 b2 b3 . . . bi−1 bi bi+1 . . . b`

The difference in the judge’s output between top and bottom
sequence is ≥ ε.
Therefore, for some i , the difference in judge’s output between
sequence i − 1 and i must be at least ε′ = ε/`.

An ε′-next bit predictor for bi is easily constructed.
CPSC 467b, Lecture 20 28/50



Outline BBS Bit-prediction Secret splitting Shamir’s scheme

Secret Splitting
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Two-key locks

There are many situations in which one wants to grant access to a
resource only if a sufficiently large group of agents cooperate.

For example, the office safe of a supermarket might require both
the manager’s key and the armored car driver’s key in order to be
opened.

This protects the store against a dishonest manager or armored car
driver, and it also prevents an armed robber from coercing the
manager into opening the safe.

A similar 2-key system is used for safe deposit boxes in banks.
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Two-part secret splitting

We might like to achieve the same properties for cryptographic
keys or other secrets.

Let k be the key for a symmetric cryptosystem. One might wish to
split k into two shares k1 and k2 so that by themselves, neither k1

nor k2 by itself reveals any information about k , but when suitably
combined, k can be recovered.

A simple way to do this is to choose k1 uniformly at random and
then let k2 = k ⊕ k1.

Both k1 and k2 are uniformly distributed over the key space and
hence give no information about k .

However, combined with XOR, they reveal k , since k = k1 ⊕ k2.
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Comparison with one-time pad

Indeed, the one-time pad cryptosystem of Lecture 3 can be viewed
as an instance of secret splitting.

Here, Alice’s secret is her message m.

The two shares are the ciphertext c and the key k .

Neither by themselves gives any information about m, but together
they reveal m = k ⊕ c .
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Multi-part secret splitting

Secret splitting generalizes to more than two shares.

Imagine a large company that restricts access to important
company secrets to only its five top executives, say the president,
vice-president, treasurer, CEO, and CIO.

They don’t want any executive to be able to access the data alone
since they are concerned that an executive might be blackmailed
into giving confidential data to a competitor.
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Multi-part secret splitting (cont.)

On the other hand, they also don’t want to require that all five
executives get together to access their data because

I this would be cumbersome;

I they worry about the death or incapacitation of any single
individual.

They decide as a compromise that any three of them should be
able to access the secret data, but one or two of them operating
alone should not have access.
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Shamir’s Secret Splitting Scheme
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(τ, k) threshold secret spitting scheme

A (τ, k) threshold secret splitting scheme splits a secret s into
shares s1, . . . , sk .

Any subset of τ or more shares allows s to be recovered, but no
subset of shares of size less than τ gives any information about s.

The executives of the previous example thus want a (3, 5)
threshold secret splitting scheme: The secret key is to be split into
5 shares, any 3 of which allow the secret to be recovered.
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A threshold scheme based on polynomials

Shamir proposed a threshold scheme based on polynomials.

A polynomial of degree d is an expression

f (x) = a0 + a1x + a2x2 + . . .+ adxd ,

where ad 6= 0.

The numbers a0, . . . , ad are called the coefficients of f .

A polynomial can be simultaneously regarded as a function and as
an object determined by its vector of coefficients.
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Interpolation

Interpolation is the process of finding a polynomial that goes
through a given set of points.

Fact
Let (x1, y1), . . . , (xk , yk) be points, where all of the xi ’s are
distinct. There is a unique polynomial f (x) of degree at most
k − 1 that passes through all k points, that is, for which
f (xi ) = yi (1 ≤ 1 ≤ k).

f can be found using Lagrangian interpolation. This statement
generalizes the familiar statement from high school geometry that
two points determine a line.
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Lagrangian interpolation method

One way to understand Lagrangian interpolation is to consider the
polynomial

δi (x) =
(x − x1)(x − x2) . . . (x − xi−1) · (x − xi+1) . . . (x − xk)

(xi − x1)(xi − x2) . . . (xi − xi−1) · (xi − xi+1) . . . (xi − xk)

Although this looks at first like a rational function, it is actually
just a polynomial in x since the denominator contains only the
x-values of the given points and not the variable x .

δi (x) has the easily-checked property that δi (xi ) = 1, and
δi (xj) = 0 for j 6= i .
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Lagrangian interpolation method (cont.)
Using δi (x), the polynomial

p(x) =
k∑

i=1

yi δi (x)

is the desired interpolating polynomial, since p(xi ) = yi for
i = 1, . . . , k.

To actually find the coefficients of p(x) when written as

p(x) =
k∑

i=0

aix
i ,

it is necessary to expand p(x) by multiplying out the factors and
collect like terms.
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Interpolation over finite fields

Interpolation also works over finite fields such as Zp for prime p.

It is still true that any k points with distinct x coordinates
determine a unique polynomial of degree at most k − 1 over Zp.

Of course, we must have k ≤ p since Zp has only p distinct
coordinate values in all.
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Shamir’s secret splitting scheme

Here’s how Shamir’s (τ, k) secret splitting scheme works.

Let Alice (also called the dealer) have secret s.

She constructs a polynomial of degree at most τ − 1 as follows:

I She sets a0 = s.

I She chooses a1, . . . , aτ−1 ∈ Zp at random.

I She chooses xi = i . (1 ≤ i ≤ k)

I She chooses yi = f (i). (1 ≤ i ≤ k)1

I Share si = (xi , yi ) = (i , f (i)).

1f (i) is the result of evaluating the polynomial f at the value x = i . All
arithmetic is over the field Zp, so we omit explicit mention of mod p.
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τ shares are necessary and sufficient to reconstruct s

Theorem
s can be reconstructed from any set T of τ or more shares.

Proof.
Suppose si1 , . . . , siτ are τ distinct shares in T .

By interpolation, there is a unique polynomial g(x) of degree
d ≤ τ − 1 that passes through these shares.

By construction of the shares, f (x) also passes through these same
shares; hence g = f as polynomials.

In particular, g(0) = f (0) = s is the secret.

Theorem
Any set T ′ of fewer than τ shares gives no information about s.
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Proof.
Let T ′ = {si1 , . . . , sir } be a set of r < τ shares.

There are in general many polynomials of degree ≤ τ − 1 that
interpolate the points in T ′.

In particular, for each s ′ ∈ Zp, there is a polynomial gs′ that
interpolates the shares in T ′ ∪ {(0, s ′)}.

Each of these polynomials passes through all of the shares in T ′,
so each is a plausible candidate for f . Moreover, gs′(0) = s ′, so
each s ′ is a plausible candidate for the secret s.

One can show further that the number of polynomials that
interpolate T ′ ∪ {(0, s ′)} is the same for each s ′ ∈ Zp, so each
possible candidate s ′ is equally likely to be s.

Hence, the shares in T ′ give no information at all about s.

CPSC 467b, Lecture 20 44/50



Outline BBS Bit-prediction Secret splitting Shamir’s scheme

Dishonesty

Secret splitting with semi-honest parties

Shamir’s scheme is an example of a protocol that works assuming
semi-honest parties.

These are players that follow the protocol but additionally may
collude in an attempt to discover secret information.

We just saw that no coalition of fewer than τ players could learn
anything about the dealer’s secret, even if they pooled all of their
shares.
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Dishonesty

Secret splitting with dishonest dealer

In practice, either the dealer or some of the players (or both) may
be dishonest and fail to follow the protocol. The honest players
would like some guarantees even in such situations.

A dishonest dealer can always lie about the true value of her
secret. Even so, the honest players want assurance that their
shares do in fact encode a unique secret, that is, all sets of τ
shares reconstruct the same secret s.
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Dishonesty

Failure of Shamir’s scheme with dishonest dealer

Shamir’s (τ, k) threshold scheme assumes that all shares lie on a
single polynomial of degree at most k − 1.

This might not hold if the dealer is dishonest and gives bad shares
to some of the players.

The players have no way to discover that they have bad shares
until later when they try to reconstruct s.

CPSC 467b, Lecture 20 47/50



Outline BBS Bit-prediction Secret splitting Shamir’s scheme

Dishonesty

Verifiable secret sharing

In verifiable secret sharing, the sharing phase is an active protocol
involving the dealer and all of the players.

At the end of this phase, either the dealer is exposed as being
dishonest, or all of the players end up with shares that are
consistent with a single secret.

Needless to say, protocols for verifiable secret sharing are quite
complicated.

CPSC 467b, Lecture 20 48/50



Outline BBS Bit-prediction Secret splitting Shamir’s scheme

Dishonesty

Dishonest players

Dishonest players present another kind of problem. These are
players that fail to follow the protocol. During the reconstruction
phase, they may fail to supply their share, or they may present a
(possibly different) corrupted share to each other player.

With Shamir’s scheme, a share that just disappears does not
prevent the secret from being reconstructed, as long as enough
valid shares remain.

But a player who lies about his share during the reconstruction
phase can cause other players to reconstruct incorrect values for
the secret.
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Dishonesty

Fault-tolerance in secret sharing protocols

A fault-tolerant secret sharing scheme should allow the secret to
be correctly reconstructed, even in the face of a certain number of
corrupted shares.

Of course, it may be desirable to have schemes that can tolerate
dishonesty in both dealer and a limited number of players.

The interested reader is encouraged to explore the extensive
literature on this subject.
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