
Outline Components Padding DES

CPSC 467: Cryptography and Computer Security

Michael J. Fischer

Lecture 6
September 18, 2017

CPSC 467, Lecture 6 1/36

Outline Components Padding DES

Symmetric Cryptosystem Components

Padding
Bit padding
Byte padding

Data Encryption Standard (DES)

CPSC 467, Lecture 6 2/36

Outline Components Padding DES

Symmetric Cryptosystem Components

CPSC 467, Lecture 6 3/36

Outline Components Padding DES

Building blocks

Symmetric (one-key) ciphers combine simple ideas, some of which
we’ve already seen:

I Substitution

I Transposition

I Composition

I Subkey generation

I Chaining

CPSC 467, Lecture 6 4/36

Outline Components Padding DES

Substitution: Replacing one letter by another

The methods discussed so far are based on letter substitution.

The Caesar cipher shifts the alphabet cyclically.
This yields 26 possible permutations of the alphabet.

In general, one can use any permutation of the alphabet, as long
as we have a way of computing the permutation and its inverse.
This gives us 26! possible permutations.

Often, permutations are specified by a table called an S-box.

CPSC 467, Lecture 6 5/36

Outline Components Padding DES

Transposition: Rearranging letters

Another technique is to rearrange the letters of the plaintext.
this message is encoded with a transposition cipher

1. Pick a number: 9.

2. Write the message in a 9-column matrix (ignoring spaces):

thi sme ssa
gei sen cod
edw ith atr
ans pos iti
onc iph er

3. Read it out by columns1

tgeao hednn iiwsc ssipi metop enhsh scaie sottr adri

1Spaces are not part of ciphertext.

CPSC 467, Lecture 6 6/36

Outline Components Padding DES

Composition: Building new ciphers from old

Let (E ′,D ′) and (E ′′,D ′′) be ciphers.
Their composition is the cipher (E ,D) with keys of the form
k = (k ′′, k ′), where

E(k ′′,k ′)(m) = E ′′k ′′(E ′k ′(m))

D(k ′′,k ′)(c) = D ′k ′(D ′′k ′′(c)).

Can express this using functional composition.
h = f ◦ g is the function such that h(x) = f (g(x)).

Using this notation, we can write E(k ′′,k ′) = E ′′k ′′ ◦ E ′k ′ and
D(k ′′,k ′) = D ′k ′ ◦ D ′′k ′′ .

CPSC 467, Lecture 6 7/36

Outline Components Padding DES

Subkey generation

When ciphers are composed, each component cipher needs a key
called a subkey. Together, those subkeys can get rather large and
unwieldy.

For practical reasons, the subkeys are themselves often generated
by a deterministic process dependent on a master key, which is the
user key of the resulting cryptosystem.

Questions: How are subkeys generated in:

I the Caesar cipher?

I the Vigenère cipher?

I the Enigma machines?

I the one-time pad?

CPSC 467, Lecture 6 8/36

Outline Components Padding DES

Chaining modes

A chaining mode describes how to employ the cipher on a
sequence of blocks.

One obvious way is to repeatedly use the cipher with the same key
on each successive block. This is called Electronic Code Book
(ECB) mode.

We can improve on this by generating a different subkey for each
block.

For example, successive subkeys might depend on the block
number, as in simple stream ciphers, or also on previous plaintext
and/or ciphertext.

CPSC 467, Lecture 6 9/36

Outline Components Padding DES

Other ways of using the cipher

Other chaining modes use the block cipher in other ways than
simply to encrypt blocks.

Output Feedback Mode (OFM) encrypts using XOR (like the
one-time pad) and uses the block cipher instead to generate a
sequence of subkeys for the XOR.

I The first subkey is the encryption of a fixed initialization
vector (IV).

I Each successive subkey is the encryption of the previous one.

We’ll look at some widely used chaining modes later.

CPSC 467, Lecture 6 10/36

Outline Components Padding DES

Padding

CPSC 467, Lecture 6 11/36

Outline Components Padding DES

Padding

Block ciphers are designed to handle sequences of blocks.

To send a message m of arbitrary length, it must first be encoded
into a new message m′ that consists of a sequence of blocks.

m′ is then encrypted, transmitted, and decrypted.

After decrypting, m′ must be decoded to recover the original
message m.

A padding rule describes the encoding and decoding process.

CPSC 467, Lecture 6 12/36

Outline Components Padding DES

How to pad

An obvious padding rule is to append 0’s to the end of m until its
length is a multiple of the block length b.

Unfortunately, this can’t be properly decoded, since the receiver
does not know how many 0’s to discard from m′.

Condition: A padding rule must describe how much padding was
added.

Suggestions?

CPSC 467, Lecture 6 13/36

Outline Components Padding DES

Bit padding

Some easy padding rules

1. Pad with 0’s, then prepend a block containing the length of m.

Example: b = 8,m = 01011,m′ =

5 in binary︷ ︸︸ ︷
00000101 01011000.

Drawback: Must know the length of m before beginning.

2. Pad with 0’s, then append a block containing the length of m.

Example: b = 8,m = 01011,m′ = 01011000

5 in binary︷ ︸︸ ︷
00000101.

Drawback: Wasteful of space

3. Pad with a single 1 bit followed by 0’s.
Example: b = 8,m = 01011,m′ = 01011100.
Drawback: Need to count bits.

What happens if the length of m is already a multiple of b?

CPSC 467, Lecture 6 14/36

Outline Components Padding DES

Bit padding

Compact bit padding

Here’s a padding rule that is both space efficient and easy to
decode.

I Choose ` = dlog2 be. This is the number of bits needed to
represent (in binary) any number in the interval [0 . . . (b − 1)].

I Choose p as small as possible so that |m|+ p + ` is a multiple
of b.

I Pad m with p 0’s followed by a length ` binary representation
of p.

To unpad, interpret the last ` bits of the message as a binary
number p; then discard a total of p + ` bits from the right end of
the message.

CPSC 467, Lecture 6 15/36

Outline Components Padding DES

Bit padding

Bit padding

For arbitrary bit strings, append p 0’s to the message followed by
an `-bit number whose value is p.

` must be big enough to represent any value for p between 0 and
b − 1, so choose ` = dlog2 be.

Choose p so that |m|+ p + ` is a multiple of b.

The padded message is m · 0p · p, where p is the binary
representation of p.

CPSC 467, Lecture 6 16/36

Outline Components Padding DES

Bit padding

Bit patting examples

1. b = 8,m = 01011,m′ = 01011

0︷︸︸︷
000 .

2. b = 8,m = 1110,m′ = 11100

1︷︸︸︷
001 .

3. b = 8,m = 111,m′ = 11100

2︷︸︸︷
010 .

4. b = 8,m = 010110,m′ = 01011000 00000

7︷︸︸︷
111 .

CPSC 467, Lecture 6 17/36

Outline Components Padding DES

Bit padding

Bit padding on 64-bit blocks

I At most 63 0’s ever need to be added, so a 6-bit length field
is sufficient.

I A message m is then padded to become m′ = m · 0p · p, where
p is the 6-bit binary representation of p.

I p is chosen as small as possible so that |m′| = |m|+ p + 6 is a
multiple of 64.

|m|︷ ︸︸ ︷
m

p︷ ︸︸ ︷
0. . . 0

6︷︸︸︷
p

CPSC 467, Lecture 6 18/36

Outline Components Padding DES

Byte padding

Block codes on byte strings

Often messages and blocks consist of a sequence of 8-bit bytes.

In that case, padding can be done by adding an integral number of
bytes to the message.

At least one byte is always added to avoid ambiguity.

CPSC 467, Lecture 6 19/36

Outline Components Padding DES

Byte padding

PKCS7 padding

PKCS7 #7 is a message syntax described in internet RFC 2315.

I Fill a partially filled last block having k “holes” with k bytes,
each having the value k when regarded as a binary number.

I If k = 0, an empty block is added before padding.

Example: Block length = 8 bytes.
m = “hello”.
m′ = 68 65 6C 6C 6F 03 03 03.

On decoding, if the last block of the message does not have this
form, then a decoding error is indicated.

Example: The last block cannot validly end in . . . 25 00 03.

What is the last block if k = 0?

CPSC 467, Lecture 6 20/36

Outline Components Padding DES

Byte padding

Possible information leakage from padding

Suppose Alice uses AES (block length 128) in ECB mode to send
129-bit messages.

Eve has a plaintext-ciphertext pair (m′, c ′) and intercepts a new
cipher text c for an unknown message m.

Because of padding, both c and c ′ are two blocks long. Let c2 and
c ′2 be the second blocks of each, respectively.

Then the last bit of m is the same as the last bit of m′ iff c2 = c ′2,
so Eve learns the last bit of m.

CPSC 467, Lecture 6 21/36

Outline Components Padding DES

Data Encryption Standard (DES)

CPSC 467, Lecture 6 22/36

Outline Components Padding DES

Data encryption standard (DES)

The Data Encryption Standard is a block cipher that operates on
64-bit blocks and uses a 56-bit key.

It became an official Federal Information Processing Standard
(FIPS) in 1976. It was officially withdrawn as a standard in 2005
after it became widely acknowledged that the key length was too
short and it was subject to brute force attack.

Nevertheless, triple DES (with a 112-bit key) is approved through
the year 2030 for sensitive government information.

The Advanced Encryption Standard (AES), based on the Rijndael
algorithm, became an official standard in 2001. AES supports key
sizes of 128, 192, and 256 bits and works on 128-bit blocks.

CPSC 467, Lecture 6 23/36

Outline Components Padding DES

Feistel networks

DES is based on a Feistel network.

This is a general method for building an invertible function from
any function f that scrambles bits.

It consists of some number of stages.

I Each stage i maps a pair of n-bit words (Li ,Ri) to a new pair
(Li+1,Ri+1). (n = 32 in case of DES.)

I By applying the stages in sequence, a t-stage network maps
(L0,R0) to (Lt ,Rt).

I (L0,R0) is the plaintext, and (Lt ,Rt) is the corresponding
ciphertext.

CPSC 467, Lecture 6 24/36

Outline Components Padding DES

A Feistel network

Image credit: Wikipedia: Feistel cipher,
http://en.wikipedia.org/wiki/Feistel cipher

CPSC 467, Lecture 6 25/36

http://en.wikipedia.org/wiki/Feistel_cipher
http://en.wikipedia.org/wiki/Feistel_cipher

Outline Components Padding DES

One stage
Each stage works as follows:

Li+1 = Ri (1)

Ri+1 = Li ⊕ f (Ri ,Ki) (2)

Here, Ki is a subkey, which is generally derived in some systematic
way from the master key k, and f is the scrambling function
(shown as F in the diagram).

The inversion problem is to find (Li ,Ri) given (Li+1,Ri+1).
Equation 1 gives us Ri . Knowing Ri and Ki , we can compute
f (Ri ,Ki). We can then solve equation 2 to get

Li = Ri+1 ⊕ f (Ri ,Ki)

CPSC 467, Lecture 6 26/36

Outline Components Padding DES

Properties of Feistel networks

The security of a Feistel-based code lies in the construction of the
scrambling function f and in the method for producing the subkeys
Ki .

The invertibility follows just from properties of ⊕ (exclusive-or).

CPSC 467, Lecture 6 27/36

Outline Components Padding DES

DES Feistel network

DES uses a 16 stage Feistel network.

The pair L0R0 is constructed from a 64-bit message by a fixed
initial permutation IP.

The ciphertext output is obtained by applying IP−1 to R16L16.

The scrambling function f (Ri ,Ki) operates on a 32-bit data block
and a 48-bit key block. Thus, 48× 16 = 768 key bits are used.

The key bits are all derived in a systematic way from the 56-bit
primary key and are far from independent of each other.

CPSC 467, Lecture 6 28/36

Outline Components Padding DES

S-boxes

The scrambling function f (Ri ,Ki) is the heart of DES.

At the heart of the scrambling function are eight “S-boxes” that
compute Boolean functions with 6 binary inputs

c0, x1, x2, x3, x4, c1

and 4 binary outputs y1, y2, y3, y4.

Each computes some fixed function in {0, 1}6 → {0, 1}4.

The eight S-boxes are all different and are specified by tables.

CPSC 467, Lecture 6 29/36

Outline Components Padding DES

Special properties of S-boxes

For fixed values of (c0, c1), the resulting function on inputs
x1, . . . , x4 is a permutation from {0, 1}4 → {0, 1}4.

Hence, can regard an S-box as performing a substitution on
four-bit “characters”, where the substitution performed depends
both on the structure of the particular S-box and on the values of
its “control inputs” c0 and c1.

Thus, DES’s 8 S-boxes are capable of performing 32 different
substitutions on 4-bit fields.

CPSC 467, Lecture 6 30/36

Outline Components Padding DES

DES scrambling network

CPSC 467, Lecture 6 31/36

Outline Components Padding DES

Connecting the boxes

The S-boxes together have a total of 48 input lines.

Each of these lines is the output of a corresponding ⊕-gate.

I One input of each of these ⊕-gates is connected to a
corresponding bit of the 48-bit subkey Ki . (This is the only
place that the key enters into DES.)

I The other input of each ⊕-gate is connected to one of the 32
bits of the first argument of f .

Since there are 48 ⊕-gates and only 32 bits in the first argument
to f , some of those bits get used more than once.

The mapping of input bits to ⊕-gates is called the expansion
permutation E .

CPSC 467, Lecture 6 32/36

Outline Components Padding DES

Expansion permutation

The expansion permutation connects input bits to ⊕ gates. We
identify the ⊕ gates by the S-box inputs to which they connect.

I Input bits 32, 1, 2, 3, 4, 5 connect to the six ⊕ gates that go
input wires c0, x1, x2, x3, x4, c1 on S-box 1.

I Bits 4, 5, 6, 7, 8, 9 are connect to the six ⊕ gates that go input
wires c0, x1, x2, x3, x4, c1 on S-box 2.

I The same pattern continues for the remaining S-boxes.

Thus, input bits 1, 4, 5, 8, 9, . . . 28, 29, 32 are each used twice, and
the remaining input bits are each used once.

CPSC 467, Lecture 6 33/36

Outline Components Padding DES

Connecting the outputs

The 32 bits of output from the S-boxes are passed through a fixed
permutation P (transposition) that spreads out the output bits.

The outputs of a single S-box at one stage of DES become inputs
to several different S-boxes at the next stage.

This helps provide the desirable “avalanche” effect, where a
change in one input bit spreads out through the network and
causes many output bits to change.

CPSC 467, Lecture 6 34/36

Outline Components Padding DES

Obtaining the subkey

The scrambling function operates on a 32-bit data block and a
48-bit key block (called a subkey).

The 56-bit master key k is split into two 28-bit pieces C and D.
At each stage, C and D are rotated by one or two bit positions.
Subkey Ki is then obtained by applying a fixed permutation
(transposition) to CD.

CPSC 467, Lecture 6 35/36

Outline Components Padding DES

Security considerations

DES is vulnerable to a brute force attack because of its small key
size.

However, it has turned out to be remarkably resistant to
recently-discovered (in the open world) sophisticated attacks.

Differential cryptanalysis: Can break DES using “only” 247 chosen
ciphertext pairs.

Linear cryptanalysis: Can break DES using 243 chosen plaintext
pairs.

Neither attack is feasible in practice.

CPSC 467, Lecture 6 36/36

	Symmetric Cryptosystem Components
	Padding
	Bit padding
	Byte padding

	Data Encryption Standard (DES)

