e
Outline Z, z Discrete log Diffie-Hellman

n
0000000000000 00
: :

CPSC 467: Cryptography and Computer Security

Michael J. Fischer

Lecture 10
October 2, 2017

: :
CPSC 467, Lecture 10 1/35

Outline Z, z: Discrete log Diffie-Hellman
0000000000000 00

Integers Modulo n

Multiplicative Subgroup of Z,
Greatest common divisor
Multiplicative subgroup of Z,

Discrete Logarithm

Diffie-Hellman Key Exchange

CPSC 467, Lecture 10 2/35

R

Outline Z, Z: Discrete log Diffie-Hellman
000000000000000

Integers Modulo n

CPSC 467, Lecture 10 3/35
00

Outline Z, z: Discrete log Diffie-Hellman
0000000000000 00

The mod relation

We saw in lecture 9 that mod is a binary operation on integers.
Mod is also used to denote a relationship on integers:
a=b (mod n) iff n|(a—b).

That is, a and b have the same remainder when divided by n. An
immediate consequence of this definition is that

a=b (mod n) iff (amodn)=(bmod n).

Thus, the two notions of mod aren't so different after all!

We sometimes write a =, b to mean a = b (mod n).

| |
CPSC 467, Lecture 10 4/35

http://zoo.cs.yale.edu/classes/cs467/2017f/lectures/ln09.pdf

Outline zZ, z: Discrete log Diffie-Hellman
0000000000000 00

Divides

b divides a (exactly), written b|a, in case a=0 (mod b) (or
equivalently, a = bq for some integer q).

Fact

If d|(a+ b), then either d divides both a and b, or d divides
neither of them.

Proof.
Suppose d|(a+ b) and d|a. Then a+ b= dq; and a = dg» for
some integers g; and g». Substituting for a and solving for b, we
get

b=dq —dg = d(q1 — q2).

Hence, d|b. O

|
CPSC 467, Lecture 10 5/35

Outline zZ, z: Discrete log Diffie-Hellman
0000000000000 00

Mod is an equivalence relation

The two-place relationship =, is an equivalence relation.
The relation =, partitions the integers Z into n pairwise disjoint
infinite sets Cy, ..., C,_1, called residue classes, such that:

1. Every integer is in a unique residue class;

2. Integers x and y are equivalent (mod n) if and only if they
are members of the same residue class.

CPSC 467, Lecture 10 6/35
00

Outline Z, z: Discrete log Diffie-Hellman
0000000000000 00

Representatives for residue classes
The unique class C; containing integer b is denoted by [b]=, or
simply by [b].
Fact
[a] = [b] iffa= b (mod n).

If x € [b], then x is said to be a representative or name of the
residue class [b]. Obviously, b is a representative of [b].
For example, if n =7, then [—11], [—4], [3], [10], [17] are all

names for the same residue class

G=1{.,-11,-4,3,10,17,...}.

| |
CPSC 467, Lecture 10 7/35

Outline z, z: Discrete log Diffie-Hellman
0000000000000 00
:

Canonical names

The canonical or preferred name for the class [b] is the unique
representative x of [b] in the range 0 < x < n—1.

For example, if n =7, the canonical name for [10] is 3.

Why is the canonical name unique?

CPSC 467, Lecture 10 8/35
00

Outline Z, z: Discrete log Diffie-Hellman
0000000000000 00

Mod is a congruence relation

Definition
The relation = is a congruence relation with respect to addition,
subtraction, and multiplication of integers if

1. = is an equivalence relation, and

2. for each arithmetic operation ® € {+,—, x}, if a = 4’ and
b="b,thenavb=adoVb.

The class containing the result of a ® b depends only on the
classes to which a and b belong and not the particular
representatives chosen. Thus,

[a® bl =[d ®b].

| |
CPSC 467, Lecture 10 9/35

Outline z, z:
000000000000000

Discrete log Diffie-Hellman

Operations on residue classes

We can extend our operations to work directly on the family of
residue classes (rather than on integers).

Let ® be an arithmetic operation in {4, —, x}, and let [a] and [b]
be residue classes. Define [a] ® [b] = [a ® b].

If you've followed everything so far, it should be no surprise that
the canonical name for [a ® b] is (a ® b) mod n!

|
CPSC 467, Lecture 10 10/35

e
Outline Z, Discrete log Diffie-Hellman

n
0000000000000 00
: :

Multiplicative Subgroup of Z,,

CPSC 467, Lecture 10 11/35
00

Outline Z, - Discrete log Diffie-Hellman

®00000000000000

: :
GCD

| |

Greatest common divisor

Definition
The greatest common divisor of two integers a and b, written
gcd(a, b), is the largest integer d such that d|a and d|b.

gcd(a, b) is always defined unless a = b = 0 since 1 is a divisor of
every integer, and the divisor of a non-zero number cannot be
larger (in absolute value) than the number itself.

Question: Why isn't gcd(0, 0) well defined?

| |
CPSC 467, Lecture 10 12/35

Qutline zZ, Z: Discrete log Diffie-Hellman
0000000000000 00
: :
GCD
: :

Computing the GCD

gcd(a, b) is easily computed if a and b are given in factored form.

Namely, let p; be the i*® prime. Write a =[] p{" and b = Hp,ﬁ.

Then
ng a, b H mm(e,,,

Example: 168 =23-3-7 and 450 =2-3%.52, so
gcd(168,450) =2 -3 = 6.

However, factoring is believed to be a hard problem, and no
polynomial-time factorization algorithm is currently known. (If it
were easy, then Eve could use it to break RSA, and RSA would be
of no interest as a cryptosystem.)

| |
CPSC 467, Lecture 10 13/35

Outline Z, z Discrete log Diffie-Hellman
0O0@00000000OO0O
: :
GCD
| |

Euclidean algorithm

Fortunately, gcd(a, b) can be computed efficiently without the
need to factor a and b using the famous Euclidean algorithm.

Euclid's algorithm is remarkable, not only because it was
discovered a very long time ago, but also because it works without
knowing the factorization of a and b.

CPSC 467, Lecture 10 14/35
00

Qutline zZ, Z: Discrete log Diffie-Hellman
000e00000000OO00
: :

GCD
| |

Euclidean identities

The Euclidean algorithm relies on several identities satisfied by the
gcd function. In the following, assume a > 0and a> b > 0:

ged(a,b) = ged(b, a) (1)
ged(a,0) = a (2)
ged(a, b) = ged(a— b, b) (3)

Identity 1 is obvious from the definition of gcd. Identity 2 follows
from the fact that every positive integer divides 0. ldentity 3
follows from the basic fact relating divides and addition on slide 5.

CPSC 467, Lecture 10 15/35
00

Outline Z, z Discrete log Diffie-Hellman
O000@0000000O0O
: :
GCD
| |

Computing GCD without factoring

The Euclidean identities allow the problem of computing gcd(a, b)
to be reduced to the problem of computing gcd(a — b, b).

The new problem is “smaller” as long as b > 0.

The size of the problem gcd(a, b) is |a| + |b|, the sum of the
absolute value of the two arguments.

CPSC 467, Lecture 10 16/35
00

Outline Z, z Discrete log Diffie-Hellman
00000800000 0000

;
GCD

An easy recursive GCD algorithm

int gcd(int a, int b)

{
if (a < b) return gcd(b, a);
else if (b == 0) return a;
else return gcd(a-b, b);

}

This algorithm is not very efficient, as you will quickly discover if
you attempt to use it, say, to compute gcd(1000000, 2).

|
CPSC 467, Lecture 10 17/35

Outline Z, z
000000@00000000

Discrete log Diffie-Hellman
:

GCD
|

Repeated subtraction

Repeatedly applying identity (3) to the pair (a, b) until it can't be
applied any more produces the sequence of pairs

(a,b),(a— b,b),(a—2b,b),...,(a— gb,b).
The sequence stops when a — gb < b.

How many times you can subtract b from a while remaining
non-negative?
Answer: The quotient g = [a/b].

CPSC 467, Lecture 10 18/35

Outline Z, z
0000000800000 00
|
GCD

Discrete log Diffie-Hellman

Using division in place of repeated subtractions

The amout a — gb that is left after g subtractions is just the
remainder a mod b.

Hence, one can go directly from the pair (a, b) to the pair
(a mod b, b).

This proves the identity

ged(a, b) = ged(a mod b, b). (4)

|
CPSC 467, Lecture 10 19/35
00

Qutline zZ, z* Discrete log Diffie-Hellman

n
[e]e]e]e]e]elele] lelelelelele)
:

GCD
|

Full Euclidean algorithm

Recall the inefficient GCD algorithm.
int gcd(int a, int b) {
if (a < b) return gcd(b, a);
else if (b == 0) return a;
else return gcd(a-b, b);
}
The following algorithm is exponentially faster.
int gcd(int a, int b) {
if (b == 0) return a;

else return gcd(b, alb);
}

Principal change: Replace gcd(a-b,b) with gcd(b, a¥b).
Besides collapsing repeated subtractions, we have a > b for all but
the top-level call on gcd(a, b). This eliminates roughly half of the
remaining recursive calls.

CPSC 467, Lecture 10 20/35

Outline Z, z Discrete log Diffie-Hellman

n
000000000 @00000
:

GCD
| |

Complexity of GCD

The new algorithm requires at most in O(n) stages, where n is the
sum of the lengths of a and b when written in binary notation, and
each stage involves at most one remainder computation.

The following iterative version eliminates the stack overhead:

int gecd(int a, int b) {
int aa;
while (b > 0) {
aa = a;
a = b;
b = aa % b;
¥
return a;

}

CPSC 467, Lecture 10 21/35

00

Outline Z, z*

n Discrete log Diffie-Hellman
0000000000e0000

Relatively prime numbers, Z*, and ¢(n)
:

Relatively prime numbers

Two integers a and b are relatively prime if they have no common
prime factors.

Equivalently, a and b are relatively prime if gcd(a, b) = 1.

Let Z} be the set of integers in Z, that are relatively prime to n, so
Z, ={acZ,|gcd(a,n) =1}

Example:

5, ={1,2,4,5,8,10,11,13,16, 17, 19, 20}.

CPSC 467, Lecture 10 22/35

Outline Z, z Discrete log Diffie-Hellman

n
0OO000000000e000
: :

Relatively prime numbers, Z*, and ¢(n)
: :

Euler’s totient function ¢(n)

¢(n) is the cardinality (number of elements) of Z7, i.e.,
¢(n) = |Z5].
Example: ¢(21) = |Z3;| = 12.

Go back and count them!

CPSC 467, Lecture 10 23/35
00

Outline Z, Discrete log Diffie-Hellman

n
00000000000 0e00
: :

Relatively prime numbers, Z*, and ¢(n)
: :

Properties of ¢(n)

1. If p is prime, then
(p)=p—1.
2. More generally, if p is prime and k > 1, then
#(p*) = p* =Pt = (p—1)pF .
3. If gcd(m, n) =1, then
p(mn) = ¢(m)d(n).

| |
CPSC 467, Lecture 10 24/35

Outline Z, Discrete log Diffie-Hellman

n
0000000000000 80
| |

] . *
Relatively prime numbers, Z, and ¢(n)
: :

Example: ¢(126)

Can compute ¢(n) for all n > 1 given the factorization of n.

$(126) = ¢(2)-¢(3%) - ¢(7)
2-1)-3-1)31)-(7-1)
1-2-3.6=36.

The 36 elements of Z7,4 are:

1,5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 53,
55, 59, 61, 65, 67, 71, 73, 79, 83, 85, 89, 95, 97, 101,
103, 107, 109, 113, 115, 121, 125.

CPSC 467, Lecture 10 25/35
00

Qutline zZ, z* Discrete log Diffie-Hellman

n
0000000000000 0e
: :

Relatively prime numbers, Z*, and ¢(n)
: :

A formula for ¢(n)

Here is an explicit formula for ¢(n).

Theorem
Write n in factored form, so n = pf* - - - pi", where p1,...,px are
distinct primes and ey, ..., e are positive integers.t Then

6(n) = (pr — 1) - 1 (p — 1) - pi™.
Important: For the product of distinct primes p and g,

o(pq) = (p—1)(qg - 1).

!By the fundamental theorem of arithmetic, every integer can be written
uniquely in this way up to the ordering of the factors.
: :

CPSC 467, Lecture 10 26/35
00

R

Outline Z, Z: Discrete log Diffie-Hellman
000000000000000

Discrete Logarithm

CPSC 467, Lecture 10 27/35
00

Outline Z, z: Discrete log Diffie-Hellman
000000000000000

Logarithms modp

Let y = b* over the reals. The ordinary base-b logarithm is the
inverse of exponentiation, so x = log,(y)

The discrete logarithm is defined similarly, but now arithmetic is
performed in Z7, for a prime p.

In particular, the base-b discrete logarithm of y modulo p is the
least non-negative integer x such that y = b* (mod p) (if it
exists). We write x = log,(y) mod p.

Fact (not needed vet): If b is a primitive root® of p, then log,(y)
is defined for every y € Z,.

2\We will talk about primitive roots later.
: :
CPSC 467, Lecture 10 28/35

Outline Z, z: Discrete log Diffie-Hellman
000000000000000

Discrete log problem

The discrete log problem is the problem of computing
log,(y) mod p, where p is a prime and b is a primitive root of p.

No efficient algorithm is known for this problem and it is believed
to be intractable.

However, the inverse of the function log,() mod p is the function
power,(x) = b* mod p, which is easily computable.

power, is believed to be a one-way function, that is a function that
is easy to compute but hard to invert.

CPSC 467, Lecture 10 29/35

00

e
Outline z, z: Discrete log Diffie-Hellman
000000000000000

Diffie-Hellman Key Exchange

CPSC 467, Lecture 10 30/35
00

Outline z, z: Discrete log Diffie-Hellman
000000000000000

Key exchange problem

The key exchange problem is for Alice and Bob to agree on a
common random key k.

One way for this to happen is for Alice to choose k at random and
then communicate it to Bob over a secure channel.

But that presupposes the existence of a secure channel.

|
CPSC 467, Lecture 10 31/35
00

Outline Z, z: Discrete log Diffie-Hellman
000000000000000

D-H key exchange overview

The Diffie-Hellman Key Exchange protocol allows Alice and Bob to
agree on a secret k without having prior secret information and
without giving an eavesdropper Eve any information about k. The
protocol is given on the next slide.

We assume that p and g are publicly known, where p is a large
prime and g a primitive root of p.

From the fact on slide 28, these assumptions imply the existence of
log,(y) for every y € Z3,.)

CPSC 467, Lecture 10 32/35

Outline z, z: Discrete log Diffie-Hellman
000000000000000

D-H key exchange protocol

Alice Bob
Choose random x € Z). Choose random y € Z).
a=g* mod p. b= g¥ mod p.
Send a to Bob. Send b to Alice.
ky = b* mod p. kp = @ mod p.

Diffie-Hellman Key Exchange Protocol.
Clearly, ks = kp, since
ka=b"=g¥ =23 = kp, (mod p).

Hence, k = ky = kp is a common key.

| |
CPSC 467, Lecture 10 33/35

Outline z, z: Discrete log Diffie-Hellman
000000000000000

Why choose from Z;,)?

One might ask why x and y should be chosen from Z) rather
than from Z,?

The reason is because of another number-theoretic fact that we
haven't talked about — Euler’s theorem — which says

g?P) =1 (mod p).

It follows that if x =y (mod ¢(p)), then g¥ = g (mod p).

| |
CPSC 467, Lecture 10 34/35

Outline Z, Z; Discrete log Diffie-Hellman
000000000000000

Security of DH key exchange

In practice, Alice and Bob may use this protocol to generate a
session key for a symmetric cryptosystem, which they subsequently
use to exchange private information.

The security of this protocol relies on Eve's presumed inability to
compute k from a and b and the public information p and g. This
is sometime called the Diffie-Hellman problem and, like discrete
log, is believed to be intractable.

Certainly the Diffie-Hellman problem is no harder that discrete log,
for if Eve could find the discrete log of a, then she would know x
and could compute k, the same way that Alice does.

However, it is not known to be as hard as discrete log.

| |
CPSC 467, Lecture 10 35/35

	Integers Modulo n
	Multiplicative Subgroup of Zn
	Greatest common divisor
	Multiplicative subgroup of Zn

	Discrete Logarithm
	Diffie-Hellman Key Exchange

