CPSC 467: Cryptography and Computer Security

Michael J. Fischer

Lecture 10 October 2, 2017

Outline

 Z_n

Integers Modulo n

Outline

Multiplicative Subgroup of \mathbf{Z}_n Greatest common divisor Multiplicative subgroup of \mathbf{Z}_n

Discrete Logarithm

Diffie-Hellman Key Exchange

Integers Modulo *n*

Outline

We saw in <u>lecture 9</u> that mod is a binary operation on integers.

Mod is also used to denote a relationship on integers:

$$a \equiv b \pmod{n}$$
 iff $n \mid (a - b)$.

That is, a and b have the same remainder when divided by n. An immediate consequence of this definition is that

$$a \equiv b \pmod{n}$$
 iff $(a \mod n) = (b \mod n)$.

Thus, the two notions of mod aren't so different after all!

We sometimes write $a \equiv_n b$ to mean $a \equiv b \pmod{n}$.

Divides

b divides a (exactly), written $b \mid a$, in case $a \equiv 0 \pmod{b}$ (or equivalently, a = bq for some integer q).

Fact

If $d \mid (a+b)$, then either d divides both a and b, or d divides neither of them.

Proof

Suppose $d \mid (a+b)$ and $d \mid a$. Then $a+b=dq_1$ and $a=dq_2$ for some integers q_1 and q_2 . Substituting for a and solving for b, we get

$$b = dq_1 - dq_2 = d(q_1 - q_2).$$

Hence, $d \mid b$.

Diffie-Hellman

The two-place relationship \equiv_n is an equivalence relation.

The relation \equiv_n partitions the integers **Z** into *n* pairwise disjoint infinite sets C_0, \ldots, C_{n-1} , called *residue classes*, such that:

- 1. Every integer is in a unique residue class;
- 2. Integers x and y are equivalent \pmod{n} if and only if they are members of the same residue class.

The unique class C_i containing integer b is denoted by $[b]_{\equiv_n}$ or simply by [b].

Fact

Outline

$$[a] = [b]$$
 iff $a \equiv b \pmod{n}$.

If $x \in [b]$, then x is said to be a *representative* or *name* of the residue class [b]. Obviously, b is a representative of [b].

For example, if n = 7, then [-11], [-4], [3], [10], [17] are all names for the same residue class

$$C_3 = \{\ldots, -11, -4, 3, 10, 17, \ldots\}.$$

Canonical names

The *canonical* or preferred name for the class [b] is the unique representative x of [b] in the range $0 \le x \le n-1$.

For example, if n = 7, the canonical name for [10] is 3.

Why is the canonical name unique?

Mod is a congruence relation

Definition

Outline

The relation \equiv is a *congruence relation* with respect to addition, subtraction, and multiplication of integers if

- 1. \equiv is an equivalence relation, and
- 2. for each arithmetic operation $\odot \in \{+, -, \times\}$, if $a \equiv a'$ and $b \equiv b'$, then $a \odot b \equiv a' \odot b'$.

The class containing the result of $a \odot b$ depends only on the classes to which a and b belong and not the particular representatives chosen. Thus,

$$[a\odot b]=[a'\odot b'].$$

Operations on residue classes

We can extend our operations to work directly on the family of residue classes (rather than on integers).

Let \odot be an arithmetic operation in $\{+, -, \times\}$, and let [a] and [b] be residue classes. Define $[a] \odot [b] = [a \odot b]$.

If you've followed everything so far, it should be no surprise that the canonical name for $[a \odot b]$ is $(a \odot b) \mod n!$

Multiplicative Subgroup of \mathbf{Z}_n

Outline

Greatest common divisor

Definition

The greatest common divisor of two integers a and b, written gcd(a, b), is the largest integer d such that $d \mid a$ and $d \mid b$.

•000000000000000

gcd(a, b) is always defined unless a = b = 0 since 1 is a divisor of every integer, and the divisor of a non-zero number cannot be larger (in absolute value) than the number itself.

Question: Why isn't gcd(0,0) well defined?

Computing the GCD

gcd(a, b) is easily computed if a and b are given in factored form.

Namely, let p_i be the i^{th} prime. Write $a = \prod p_i^{e_i}$ and $b = \prod p_i^{f_i}$. Then

$$\gcd(a,b)=\prod p_i^{\min(e_i,f_i)}.$$

Example: $168 = 2^3 \cdot 3 \cdot 7$ and $450 = 2 \cdot 3^2 \cdot 5^2$, so $gcd(168, 450) = 2 \cdot 3 = 6$.

However, factoring is believed to be a hard problem, and no polynomial-time factorization algorithm is currently known. (If it were easy, then Eve could use it to break RSA, and RSA would be of no interest as a cryptosystem.)

Euclidean algorithm

Fortunately, gcd(a, b) can be computed efficiently without the need to factor a and b using the famous *Euclidean algorithm*.

Euclid's algorithm is remarkable, not only because it was discovered a very long time ago, but also because it works without knowing the factorization of *a* and *b*.

Outline GCD

Fuclidean identities

The Euclidean algorithm relies on several identities satisfied by the gcd function. In the following, assume a > 0 and a > b > 0:

$$\gcd(a,b) = \gcd(b,a) \tag{1}$$

$$\gcd(a,0) = a \tag{2}$$

$$\gcd(a,b) = \gcd(a-b,b) \tag{3}$$

Identity 1 is obvious from the definition of gcd. Identity 2 follows from the fact that every positive integer divides 0. Identity 3 follows from the basic fact relating divides and addition on slide 5.

Computing GCD without factoring

The Euclidean identities allow the problem of computing gcd(a, b)to be reduced to the problem of computing gcd(a-b,b).

The new problem is "smaller" as long as b > 0.

The size of the problem gcd(a, b) is |a| + |b|, the sum of the absolute value of the two arguments.

An easy recursive GCD algorithm

 Z_n

```
int gcd(int a, int b)
  if ( a < b ) return gcd(b, a);</pre>
  else if ( b == 0 ) return a:
  else return gcd(a-b, b);
```

This algorithm is not very efficient, as you will quickly discover if you attempt to use it, say, to compute gcd(1000000, 2).

GCD

Outline

Repeated subtraction

Repeatedly applying identity (3) to the pair (a, b) until it can't be applied any more produces the sequence of pairs

$$(a,b), (a-b,b), (a-2b,b), \ldots, (a-qb,b).$$

The sequence stops when a - qb < b.

How many times you can subtract b from a while remaining non-negative?

Answer: The quotient q = |a/b|.

GCD

Using division in place of repeated subtractions

The amout a - qb that is left after q subtractions is just the remainder a mod b.

Hence, one can go directly from the pair (a, b) to the pair $(a \bmod b, b).$

This proves the identity

$$\gcd(a,b) = \gcd(a \bmod b,b). \tag{4}$$

Full Euclidean algorithm

```
Recall the inefficient GCD algorithm.
```

```
int gcd(int a, int b) {
 if (a < b) return gcd(b, a);
 else if (b == 0) return a:
 else return gcd(a-b, b);
```

The following algorithm is exponentially faster.

```
int gcd(int a, int b) {
 if (b == 0) return a:
 else return gcd(b, a%b);
```

Principal change: Replace gcd(a-b,b) with gcd(b, a\%b).

Besides collapsing repeated subtractions, we have a > b for all but the top-level call on gcd(a, b). This eliminates roughly half of the remaining recursive calls.

Discrete log

Complexity of GCD

The new algorithm requires at most in O(n) stages, where n is the sum of the lengths of a and b when written in binary notation, and each stage involves at most one remainder computation.

The following iterative version eliminates the stack overhead:

```
int gcd(int a, int b) {
  int aa;
  while (b > 0) {
    aa = a;
    a = b;
    b = aa \% b;
  return a:
```

Relatively prime numbers

Two integers a and b are *relatively prime* if they have no common prime factors.

Equivalently, a and b are relatively prime if gcd(a, b) = 1.

Let \mathbf{Z}_n^* be the set of integers in \mathbf{Z}_n that are relatively prime to n, so

$$\mathbf{Z}_n^* = \{ a \in \mathbf{Z}_n \mid \gcd(a, n) = 1 \}.$$

Example:

$$\boldsymbol{Z}_{21}^* = \{1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20\}.$$

Relatively prime numbers, \mathbf{Z}_n^* , and $\phi(n)$

Euler's totient function $\phi(n)$

 $\phi(n)$ is the cardinality (number of elements) of \mathbf{Z}_{n}^{*} , i.e.,

000000000000000

$$\phi(n) = |\mathbf{Z}_n^*|.$$

Example:
$$\phi(21) = |\mathbf{Z}_{21}^*| = 12$$
.

Go back and count them!

Outline

Properties of $\phi(n)$

1. If p is prime, then

$$\phi(p) = p - 1.$$

2. More generally, if p is prime and $k \ge 1$, then

0000000000000000

$$\phi(p^k) = p^k - p^{k-1} = (p-1)p^{k-1}.$$

3. If gcd(m, n) = 1, then

$$\phi(mn) = \phi(m)\phi(n).$$

Outline

Example: $\phi(126)$

Can compute $\phi(n)$ for all $n \geq 1$ given the factorization of n.

$$\phi(126) = \phi(2) \cdot \phi(3^{2}) \cdot \phi(7)
= (2-1) \cdot (3-1)(3^{2-1}) \cdot (7-1)
= 1 \cdot 2 \cdot 3 \cdot 6 = 36.$$

The 36 elements of \mathbf{Z}_{126}^* are:

1. 5. 11. 13. 17. 19. 23. 25. 29. 31. 37. 41. 43. 47. 53. 55. 59. 61. 65. 67. 71. 73. 79. 83. 85. 89. 95. 97. 101. 103, 107, 109, 113, 115, 121, 125,

A formula for $\phi(n)$

Here is an explicit formula for $\phi(n)$.

Theorem

Outline

Write n in factored form, so $n = p_1^{e_1} \cdots p_k^{e_k}$, where p_1, \dots, p_k are distinct primes and e_1, \ldots, e_k are positive integers.¹ Then

$$\phi(n) = (p_1 - 1) \cdot p_1^{e_1 - 1} \cdots (p_k - 1) \cdot p_k^{e_k - 1}.$$

Important: For the product of distinct primes p and q,

$$\phi(pq)=(p-1)(q-1).$$

¹By the fundamental theorem of arithmetic, every integer can be written uniquely in this way up to the ordering of the factors.

Discrete Logarithm

Outline

Logarithms mod p

Let $y = b^x$ over the reals. The ordinary base-b logarithm is the inverse of exponentiation, so $x = \log_b(y)$

The discrete logarithm is defined similarly, but now arithmetic is performed in \mathbf{Z}_p^* for a prime p.

In particular, the base-b discrete logarithm of y modulo p is the least non-negative integer x such that $y \equiv b^x \pmod{p}$ (if it exists). We write $x = \log_b(y) \mod p$.

Fact (not needed yet): If b is a primitive $root^2$ of p, then $\log_b(y)$ is defined for every $y \in \mathbf{Z}_p^*$.

²We will talk about primitive roots later.

Discrete log

Discrete log problem

 Z_n

The *discrete log problem* is the problem of computing $\log_b(y)$ mod p, where p is a prime and b is a primitive root of p.

No efficient algorithm is known for this problem and it is believed to be intractable.

However, the inverse of the function $\log_{b}()$ mod p is the function $power_b(x) = b^x \mod p$, which is easily computable.

power_b is believed to be a *one-way function*, that is a function that is easy to compute but hard to invert.

Diffie-Hellman Key Exchange

Discrete log

Key exchange problem

The key exchange problem is for Alice and Bob to agree on a common random key k.

One way for this to happen is for Alice to choose k at random and then communicate it to Bob over a secure channel.

But that presupposes the existence of a secure channel.

Discrete log

D-H key exchange overview

The Diffie-Hellman Key Exchange protocol allows Alice and Bob to agree on a secret k without having prior secret information and without giving an eavesdropper Eve any information about k. The protocol is given on the next slide.

We assume that p and g are publicly known, where p is a large prime and g a primitive root of p.

From the fact on slide 28, these assumptions imply the existence of $\log_{\sigma}(y)$ for every $y \in \mathbf{Z}_{p}^{*}$.)

| Bob |
|--|
| Choose random $y \in \mathbf{Z}_{\phi(p)}$. |
| $b = g^y \mod p$. |
| Send b to Alice. |
| $k_b = a^y \mod p$. |
| |

Diffie-Hellman Key Exchange Protocol.

Clearly, $k_a = k_b$ since

$$k_a \equiv b^x \equiv g^{xy} \equiv a^y \equiv k_b \pmod{p}.$$

Hence, $k = k_a = k_b$ is a common key.

Why choose from $\mathbf{Z}_{\phi(p)}$?

One might ask why x and y should be chosen from $\mathbf{Z}_{\phi(p)}$ rather than from \mathbf{Z}_p ?

The reason is because of another number-theoretic fact that we haven't talked about – Euler's theorem – which says

$$g^{\phi(p)} \equiv 1 \pmod{p}$$
.

It follows that if $x \equiv y \pmod{\phi(p)}$, then $g^x \equiv g^y \pmod{p}$.

Discrete log

Security of DH key exchange

In practice, Alice and Bob may use this protocol to generate a session key for a symmetric cryptosystem, which they subsequently use to exchange private information.

The security of this protocol relies on Eve's presumed inability to compute k from a and b and the public information p and g. This is sometime called the *Diffie-Hellman problem* and, like discrete log, is believed to be intractable.

Certainly the Diffie-Hellman problem is no harder that discrete log, for if Eve could find the discrete log of a, then she would know x and could compute k_a the same way that Alice does.

However, it is not known to be as hard as discrete log.