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Number Theory Summary

Integers Let Z denote the integers and Z™ the positive integers.

Division For ¢ € Z and n € Z™, there exist unique integers ¢, such that a = nqg + r and
0 < r < n. We denote the quotient q by |a/n| and the remainder r by a mod n. We say n
divides a (written n | a) if  mod n = 0. If n|a, n is called a divisor of a. If also 1 < n < |al,
n is said to be a proper divisor of a.

Greatest common divisor The greatest common divisor (gcd) of integers a, b (written ged(a, b) or
simply (a, b)) is the greatest integer d such that d | a and d | b. If gcd(a,b) = 1, then a and b
are said to be relatively prime.

Euclidean algorithm Computes gcd(a,b). Based on two facts: ged(0,b) = b; ged(a,b) =
ged(b,a — gb) for any ¢ € Z. For rapid convergence, take ¢ = |a/b], in which case
a — gb=a mod b.

Congruence For a,b € Z andn € Z", we writte a = b (mod n) iff n | (b — a). Note a = b
(mod n) iff (a mod n) = (b mod n).

Modular arithmetic Fix n € Z*. Let Z, = {0,1,...,n — 1} and let Z}, = {a € Z, |
ged(a,n) = 1}. For integers a, b, define a®b = (a+b) mod n and a®b = ab mod n. @ and
® are associative and commutative, and ® distributes over ®. Moreover, mod n distributes
over both + and X, so for example, a + b x (¢ + d) mod n = (a mod n) + (b mod n) x
((cmod n)+ (dmod n)) =a®b® (¢ ®d). Zy, is closed under @ and ®, and Z is closed
under ®.

Primes and prime factorization A number p > 2 is prime if it has no proper divisors. Any posi-
tive number n can be written uniquely (up to the order of the factors) as a product of primes.
Equivalently, there exist unique integers k,p1, ..., Pk, €1,-. ., €, such that n = Hle i,
k>0,p1 <p2 <...< pgare primes, and each e; > 1. The product H§=1 p;% is called
the prime factorization of n. A positive number n is composite if (YF_ e;) > 2 in its prime
factorization. By these definitions, n = 1 has prime factorization with k£ = 0, so 1 is neither
prime nor composite.

Linear congruences Let a,b € Z, n € Z*. Letd = ged(a,n). If d| b, then there are d solutions
x in Z,, to the congruence equation ax = b (mod n). If d } b, then az = b (mod n) has no
solution.

Extended Euclidean algorithm Finds one solution of az = b (mod n), or announces that there
are none. Call a triple (g, u,v) valid if g = au + nv. Algorithm generates valid triples
starting with (n,0,1) and (a,1,0). Goal is to find valid triple (g,u,v) such that g | b. If
found, then u(b/g) solves ax = b (mod n). If none exists, then no solution. Given valid
(g,u,v), (¢',u’,v"), can generate new valid triple (§—qg’, u—qu’, v—qv") for any ¢ € Z. For
rapid convergence, choose ¢ = | g/¢’|, and retain always last two triples. Note: Sequence of
generated g-values is exactly the same as the sequence of numbers generated by the Euclidean
algorithm.
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Inverses Letn € Z", a € Z. There exists unique b € Z such thatab =1 (mod n) iff ged(a,n) =
1. Such a b, when it exists, is called an inverse of a modulo n. We write ¢! for the unique
inverse of @ modulo n that is also in Z,,. Can find a~! mod n efficiently by using Extended
Euclidean algorithm to solve az =1 (mod n).

Euler function Let ¢(n) = |Z*|. One can show that ¢(n) = [[%_, (p; — 1)p;% ", where [%_; p;®
is the prime factorization of n. In particular, if p is prime, then ¢(p) = p — 1, and if p, g are
distinct primes, then ¢(pg) = (p — 1)(q — 1).

Euler’s theorem Letn € ZT, a € Z*. Then a®™ = 1 (mod n). As a consequence, if 7 = s
(mod ¢(n)) then a” = a® (mod n).

Order of an element Letn € Z", a € Z*. We define ord(a), the order of a modulo n, to be the
smallest number & > 1 such that a* = 1 (mod n). Fact: ord(a)|¢(n).

Primitive roots Letn € Z*, a € Z%. a is a primitive root of n iff ord(a) = ¢(n). For a primitive
root a, it follows that Z* = {a mod n,a? mod n,...,a®™ mod n}. If n has a primitive
root, then it has ¢(¢(n)) primitive roots. Primitive roots exist for every prime p (and for some
other numbers as well). a is a primitive root of p iff a(P~1/7 £ 1 (mod p) for every prime
divisor g of p — 1.

Discrete log Let p be a prime, a a primitive root of p, b € Z;; such that b = a* (mod p) for some
k,0 <k <p— 2. Wesay k is the discrete logarithm of b to the base a.

Chinese remainder theorem Let ny,...,n; be pairwise relatively prime numbers in Z*, let
ai,...,ay be integers, and let n = [[; n;. There exists a unique = € Z,, such that x = a;
(mod n;) forall 1 < i < k. To compute z, let N; = n/n; and compute M; = NZ-_1 mod n;,
1<=i<=k Thenx = (Zle a; M;N;) mod n.

Quadratic residues Let a € Z, n € Z™. ais a quadratic residue modulo n if there exists 3 such
that a = 42 (mod n). a is sometimes called a square and y its square root.

Quadratic residues modulo a prime If p is an odd prime, then every quadratic residue in Z; has
exactly two square roots in Zy, and exactly half of the elements in Z;, are quadratic residues.
Let a € Zj be a quadratic residue. Then alP=D/2 = (42)P=1/2 = yp=1 = 1 (mod p),
where y a square root of a modulo p. Let g be a primitive root modulo p. If a = g¥ (mod p),
then a is a quadratic residue modulo p iff k is even, in which case its two square roots are
¢*/? mod p and —g*/? mod p. If p = 3 (mod 4) and a € Z, is a quadratic residue modulo
p, then aPt1)/4 is a square root of a, since (aP*1/4)?2 = 4aP~1/2 = ¢ (mod p).

Quadratic residues modulo products of two primes If n = pq for p, ¢ distinct odd primes, then
every quadratic residue in Z; has exactly four square roots in Z;, and exactly 1/4 of the
elements in Z;, are quadratic residues. An element a € Z}, is a quadratic residue modulo n iff
it is a quadratic residue modulo p and modulo q. The four square roots of a can be found from
its two square roots modulo p and its two square roots modulo g using the Chinese remainder

theorem.

a

Legendre symbol Let a > 0, p an odd prime. (5> = 1if a is a quadratic residue modulo p, —1 if

a is a quadratic non-residue modulo p, and 0 if p|a. Fact: (%) = q=1/2,
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Jacobi symbol Leta > 0, n an odd positive number with prime factorization Hle p;®. We define

(2) =TI, ( - ) “ (By convention, this product is I when k& = 0, so ({) = 1.) The Jacobi

n i
and Legendre symbols agree when n is an odd prime. If (%) = —1 then a is definitely not a
quadratic residue modulo n, but if (%) = 1, a might or might not be a quadratic residue.

Computing the Jacobi symbol (%) can be computed efficiently by a straightforward recursive
algorithm, based on the following identities: (%) =1; (%) =0forn #1; (%) = (%2)
if a1 = a2 (mod n); (%) = 1lifn = £1 (mod 8); (%) = —1lifn = £3 (mod 8);

(2) = (2) (95 (9) = () ifa=1 (mod orn =1 (mod 4); (&) = - (2) if

n n n

a=n=3 (mod 4).

Solovay-Strassen test for compositeness Let n € Z™. If n is composite, then for roughly 1/2 of
the numbers @ € Z, (%) # a"Y/2 (mod n). If n is prime, then for every a € Z,

(&) = a®1/2 (mod n).

Miller-Rabin test for compositeness Letn € ZT and writen—1 = 2%m, where m is odd. Choose

1 <a<n-—1. Compute b; = a™?' mod n fori = 0,1,...,k — 1. If n is composite, then
for roughly 3/4 of the possible values for a, by # 1 and b; # —1for0 <i < k — 1. If nis
prime, then for every a, either by = 1 or b; = —1 for some ¢, 0 <7 < k — 1.
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