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Pseudorandom Sequence Generation

1 Distinguishability and Bit Prediction

Let D be a probability distribution on a finite set 2. Then D associates a probability Pp(w) with
each each element w € ). We will also regard D as a random variable that ranges over {2 and
assumes value w € Q) with probability Pp(w).

Definition: An (S, ¢)-pseudorandom sequence generator (PRSG) is a function f:S — {0,1}%.
(We generally assume 2 > |S|.) More properly speaking, a PRSG is a randomness amplifier.
Given a random, uniformly distributed seed s € S, the PRSG yields the pseudorandom sequence
z = f(s). We use S also to denote the uniform distribution on seeds, and we denote the induced
probability distribution on pseudorandom sequences by f(.S).

The goal of an (S, ¢)-PRSG is to generate sequences that “look random”, that is, are com-
putationally indistinguishable from sequences drawn from the uniform distribution U on length-¢
sequences. Informally, a probabilistic algorithm A that always halts “distinguishes” X from Y if
its output distribution is “noticeably differently” depending whether its input is drawn at random
from X or from Y. Formally, there are many different kinds of distinguishably. In the following
definition, the only aspect of A’s behavior that matters is whether or not it outputs “1”.

Definition: Let ¢ > 0, let X, Y be distributions on {0, 1}5, and let A be a probabilistic algorithm.
Algorithm A naturally induces probability distributions A(X) and A(Y") on the set of possible
outcomes of A. We say that A e-distinguishes X and Y if

[PIA(X) = 1] = PIA(Y) = 1]| > ¢,
and we say X and Y are e-indistinguishable by A if A does not distinguish them.

A natural notion of randomness for PRSG’s is that the next bit should be unpredictable given all
of the bits that have been generated so far.

Definition: Lete > 0and 1 < ¢ < /. A probabilistic algorithm [V; is an e-next bit predictor for bit
iof fif
1
P[NZ'(Zl, ce Zi—l) = Zz] > 5 + €
where (Z1, ..., Zy) is distributed according to f(S).

A still stronger notion of randomness for PRSG’s is that each bit ¢ should be unpredictable, even
if one is given all of the bits in the sequence except for bit 7.

Definition: Lete¢ > 0 and 1 < ¢ < /. A probabilistic algorithm B; is an e-strong bit predictor for
biti of f if
1
PBi(Zy,....Zi—1,Ziy1, ..., Zp) = Zi] > 5T

where (Z1, ..., Zy) is distributed according to f(S).
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The close relationship between distinguishability and the two kinds of bit prediction is estab-
lished in the following theorems.

Theorem 1 Suppose ¢ > 0 and N; is an e-next bit predictor for bit i of f. Then algorithm B; is an

e-strong bit predictor for bit i of f, where algorithm B;(z1,. .., 2i—1, Zi+1, - - -, 2¢) simply ignores

its last ¢ — i inputs and computes Ni(z1, ..., zi—1).

Proof: Obvious from the definitions. |
Letx = (x1,...,1) be a vector. We define X’ to be the result of deleting the i*" element of x,

that is, x* = (xl, BN 47 T [ o7 NS B ,:L‘g).

Theorem 2 Suppose € > 0 and Bj is an e-strong bit predictor for bit i of f. Then algorithm A
e-distinguishes f(S) and U, where algorithm A on input x outputs 1 if B;(x') = x; and outputs 0
otherwise.

Proof: By definition of A, A(x) = 1 precisely when B;(x') = x;. Hence, P[A(f(S)) =1] >
1/2 + €. On the other hand, for r = U, P[B;(r%) = r;] = 1/2 since r; is a uniformly distributed
bivalued random variable that is independent of r’. Thus, P[A(U) =1] = 1/2, so A e-distinguishes
f(S)and U. [ |

For the final step in the 3-way equivalence, we have to weaken the error bound.

Theorem 3 Suppose ¢ > 0 and algorithm A e-distinguishes f(S) and U. For each 1 < i < { and
c € {0,1}, define algorithm N{(z1, ..., zi—1) as follows:

1. Flip coins to generate £ — i + 1 random bits 7;, ..., 7.
Tif A(z1, ..oy 2im1, Ty e ooy 1e) = 15

0 otherwise.

3. Outputv @ r; ®ec.

2. Letv:{

Then there exist m and c for which algorithm N, is an €/{-next bit predictor for bit m of f.

Proof: Let (Z1,...,7Zy) = f(S) and (Ry,...,Ry) = U be random variables, and let D; =
(Z1,...,Zi,Rit1,-..,Ry). D; is the distribution on ¢-bit sequences that results from choosing
the first ¢ bits according to f(.S) and choosing the last £ — i bits uniformly. Clearly Dy = U and
Dy = f(9).

Let p; = P[A(D;) = 1],0 < i < £. Since A e-distinguishes Dy and Dy, we have |py — pg| > €.
Hence, there exists m, 1 < m < ¢, such that |p,,, — pm—1| > €/£. We show that the probability that
N¢, correctly predicts bit m for fis 1/2+ (pp, —pm—1) ifc = 1and 1/2+ (py—1 —pm) ifc = 0. Tt
will follow that either N0, or N}, correctly predicts bit m with probability 1/2+ py, —pm—_1| > €/£.

Consider the following experiments. In each, we choose an ¢-tuple (z1,. .., 2z;) according to
f(S) and an ¢-tuple (ry, ..., 7,) according to U.

Experiment F: Succeed if A(zy,... ,zm_l,,rm+1, o) =1
Experiment F;: Succeed if A(zy,..., Zm—1,,7"m+1, coyre) = 1.
Experiment Fy: Succeed if A(z1,...,2m—1, s Tmgls -, T0) = 1.
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Let ¢; be the probability that experiment E; succeeds, where j = 0,1, 2. Clearly g2 = (g0 + ¢1)/2
since 7, = 2, is equally likely as 7, = —zp,.

Now, the inputs to A in experiment Fj are distributed according to D,,, so p,,, = qo. Also, the
inputs to A in experiment Fs are distributed according to D,,_1, s0 p;n—1 = ¢o. Differencing, we
get Py — Pm—1 = qo — q2 = (g0 — q1)/2.

We now analyze the probability that NS, correctly predicts bit m of f(S). Assume without loss
of generality that A’s output is in {0,1}. A particular run of N, (21,. .., 2zm—1) correctly predicts
Zm, If

A(zl,...,zm,l,,...,m)@rm@c:zm (1)
If 7, = Zm, (I) simplifies to

A(Zl)"'vzm*la)"'77‘5):07 (2)

and if 7, = =2y, (I simplifies to

A(zl,...,zm,l,,...,rg):—'c. 3)

Let OKY, be the event that N, (Z1, ..., Zm—1) = Zm, i.e., that N&, correctly predicts bit m for
f. From (), it follows that

¢ . 0 ifc=1
PIOK, | B = Zn] —{ (1—q) ife=0
for in that case the inputs to A are distributed according to experiment Ey. Similarly, from (3), it
follows that

c - @ ifc=1
PIOKG, | B = Zm}—{ (1—q) if=c=0

for in that case the inputs to A are distributed according to experiment E;. Since P[R,,, = Z,,| =
P[R,, = =Zy) = 1/2, we have

1 1
PIOK,] = 5 PIOKS, | Ry = Zyn] + 5 - PIOKS, | R = =Zu]
0/2+1—q1)/2=1/24ppm —pm—1 ifc=1
n/2+(1—=q)/2=1/24pm—1—pm ifc=0.
Thus, P[OKS,| = 1/2 4 |pm — pm—1| > €/{ for some ¢ € {0, 1}, as desired. [

2 BBS Generator

We now give a PRSG due to Blum, Blum, and Shub for which the problem distinguishing its outputs
from the uniform distribution is closely related to the difficulty of determining whether a number
with Jacobi symbol 1 is a quadratic residue modulo a certain kind of composite number called a
Blum integer. The latter problem is believed to be computationally hard. First some background.

A Blum prime is a prime number p such that p = 3 (mod 4). A Blum integer is a number
n = pq, where p and ¢ are Blum primes. Blum primes and Blum integers have the important
property that every quadratic residue a has a square root y which is itself a quadratic residue. We
call such a y a principal square root of a and denote it by /a.
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Lemmad4 Let p be a Blum prime, and let a be a quadratic residue modulo p. Then y =
a4 mod p is a principal square root of a modulo p.

Proof: We must show that, modulo p, y is a square root of a and y is a quadratic residue. By
the Euler criterion [Theorem 2, handout 15], since a is a quadratic residue modulo p, we have
a?~1/2 =1 (mod p). Hence, y? = (a?t1/*)2 = qa»~1)/2 = ¢ (mod p), so y is a square root
of a modulo p. Applying the Euler criterion now to y, we have

—1)/2 1)/4
01/ = (a<p+1>/4)<p 2 _ (auo—l)/z)(p+ 104 Z 1 (mod p).

Hence, y is a quadratic residue modulo p. |

Theorem 5 Let n = pq be a Blum integer, and let a be a quadratic residue modulo n. Then a has
four square roots modulo n, exactly one of which is a principal square root.

Proof: By Lemmaf] a has a principal square root « modulo p and a principal square root v modulo
q. Using the Chinese remainder theorem, we can find x that solves the equations

x = +u (mod p)
x = +v (mod q)
for each of the four choices of signs in the two equations, yielding 4 square roots of a modulo n. It

is easily shown that the x that results from the +, + choice is a quadratic residue modulo n, and the
others are not. L

From Theorem 4] it follows that the mapping b + b?> mod n is a bijection from the set of
quadratic residues modulo n onto itself. (A bijection is a function that is 1-1 and onto.)

Definition: The Blum-Blum-Shub generator BBS is defined by a Blum integer n = pq and an
integer ¢. It is a (Z},¢)-PRSG defined as follows: Given a seed sg € Z;, we define a se-

quence si,52,53,...,5¢, where s; = s? ; modn fori = 1,...,¢. The {-bit output sequence
is by, bo, b3, ..., by, where b; = s; mod 2.
Note that any s,,, uniquely determines the entire sequence sy, ..., Sy and corresponding output

bits. Clearly, s,, determines s,,+1 since Spy,+1 = s%l mod n. But likewise, s,, determines s,,_1
since S;,—1 = +/Sm , the principal square root of s, modulo n, which is unique by Theorem

3 Security of BBS

Theorem 6 Suppose there is a probabilistic algorithm A that e-distinguishes BBS(Z},) from U.
Then there is a probabilistic algorithm Q)(x) that correctly determines with probability at least
¢ = €/l whether or not an input x € Z. with Jacobi symbol (%) = 1 is a quadratic residue
modulo n.

Proof: From A, one easily constructs an algorithm A that reverses its input and then applies A.
A e-distinguishes the reverse of BBS(Z}) from U. By Theorem there is an €' -next bit predictor
Ny, for bit £ — m + 1 of BBS reversed. Thus, N,,(bs,by_1, ..., bm+1) correctly outputs b, with
probability at least 1/2 + €/, where (b1, ..., by) is the (unreversed) output from BBS(Z}).
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We now describe algorithm Q(x), assuming x € Z; and (£) = 1. Using x as a seed, compute
(bi,...,by) = BBS(x) and let b = Ny, (bp—m, be—m—1,--.,b1). Output “quadratic residue” if
b = xr mod 2 and “non-residue” otherwise.

To see that this works, observe first that Ny, (by—p,, by—m—1, ..., b1) correctly predicts by with
probability at least 1/2+¢’, where by = (V22 mod n) mod 2. This is because we could in principle
let 41 = x? mod n and then work backwards defining s,,, = VSm+1 mod n, $;—1 = /Sy mod
n, ..., 5o = /51 mod n. It follows that b, . .., by_, are the last £ — m + 1 bits of BBS(s), and
bg is the bit predicted by N,,.

Now, x and —z are clearly square roots of s,,11. We show that they both have Jacobi symbol 1.

Since (£) = (2) : (5> = 1, then either (g) = (5) =1lor <5> = (§> = —1. But because

n p q p q p q
1

p and g are Blum primes, —1 is a quadratic non-residue modulo both p and ¢, so (‘7) = (_71) =

—1. It follows that (‘Tx) = 1. Hence, x = £,/S;,+1, 80 exactly one of x and —x is a quadratic
residue.

Since n is odd, z mod n and —x mod n have opposite parity. Hence, x is a quadratic residue
iff « and /5,41 have the same parity. But NN, outputs /5., 11 mod 2 with probability 1/2 + ¢,
so it follows that () correctly determines the quadratic residuosity of its argument with probability
1/24¢€. [ |
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