YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

CPSC 467: Cryptography and Computer Security

Professor M. J. Fischer

Pseudorandom Sequence Generation

1 Distinguishability and Bit Prediction

Let D be a probability distribution on a finite set Ω . Then D associates a probability $P_D(\omega)$ with each each element $\omega \in \Omega$. We will also regard D as a random variable that ranges over Ω and assumes value $\omega \in \Omega$ with probability $P_D(\omega)$.

Definition: An (S, ℓ) -pseudorandom sequence generator (PRSG) is a function $f: S \to \{0, 1\}^{\ell}$. (We generally assume $2^{\ell} \gg |S|$.) More properly speaking, a PRSG is a randomness amplifier. Given a random, uniformly distributed seed $s \in S$, the PRSG yields the pseudorandom sequence z = f(s). We use S also to denote the uniform distribution on seeds, and we denote the induced probability distribution on pseudorandom sequences by f(S).

The goal of an (S, ℓ) -PRSG is to generate sequences that "look random", that is, are computationally indistinguishable from sequences drawn from the uniform distribution U on length- ℓ sequences. Informally, a probabilistic algorithm A that always halts "distinguishes" X from Y if its output distribution is "noticeably differently" depending whether its input is drawn at random from X or from Y. Formally, there are many different kinds of distinguishably. In the following definition, the only aspect of A's behavior that matters is whether or not it outputs "1".

Definition: Let $\epsilon > 0$, let X, Y be distributions on $\{0, 1\}^{\ell}$, and let A be a probabilistic algorithm. Algorithm A naturally induces probability distributions A(X) and A(Y) on the set of possible outcomes of A. We say that $A \epsilon$ -distinguishes X and Y if

$$|P[A(X) = 1] - P[A(Y) = 1]| \ge \epsilon,$$

and we say X and Y are ϵ -indistinguishable by A if A does not distinguish them.

A natural notion of randomness for PRSG's is that the next bit should be unpredictable given all of the bits that have been generated so far.

Definition: Let $\epsilon > 0$ and $1 \le i \le \ell$. A probabilistic algorithm N_i is an ϵ -next bit predictor for bit *i* of *f* if

$$P[N_i(Z_1, \dots, Z_{i-1}) = Z_i] \ge \frac{1}{2} + \epsilon$$

where (Z_1, \ldots, Z_ℓ) is distributed according to f(S).

A still stronger notion of randomness for PRSG's is that each bit i should be unpredictable, even if one is given all of the bits in the sequence except for bit i.

Definition: Let $\epsilon > 0$ and $1 \le i \le \ell$. A probabilistic algorithm B_i is an ϵ -strong bit predictor for bit i of f if

$$P[B_i(Z_1, \dots, Z_{i-1}, Z_{i+1}, \dots, Z_\ell) = Z_i] \ge \frac{1}{2} + \epsilon$$

where (Z_1, \ldots, Z_ℓ) is distributed according to f(S).

The close relationship between distinguishability and the two kinds of bit prediction is established in the following theorems.

Theorem 1 Suppose $\epsilon > 0$ and N_i is an ϵ -next bit predictor for bit i of f. Then algorithm B_i is an ϵ -strong bit predictor for bit i of f, where algorithm $B_i(z_1, \ldots, z_{i-1}, z_{i+1}, \ldots, z_{\ell})$ simply ignores its last $\ell - i$ inputs and computes $N_i(z_1, \ldots, z_{i-1})$.

Proof: Obvious from the definitions.

Let $\mathbf{x} = (x_1, \dots, x_\ell)$ be a vector. We define \mathbf{x}^i to be the result of deleting the i^{th} element of \mathbf{x} , that is, $\mathbf{x}^i = (x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_\ell)$.

Theorem 2 Suppose $\epsilon > 0$ and B_i is an ϵ -strong bit predictor for bit i of f. Then algorithm A ϵ -distinguishes f(S) and U, where algorithm A on input \mathbf{x} outputs 1 if $B_i(\mathbf{x}^i) = x_i$ and outputs 0 otherwise.

Proof: By definition of A, $A(\mathbf{x}) = 1$ precisely when $B_i(\mathbf{x}^i) = x_i$. Hence, $P[A(f(S)) = 1] \ge 1/2 + \epsilon$. On the other hand, for $\mathbf{r} = U$, $P[B_i(\mathbf{r}^i) = r_i] = 1/2$ since r_i is a uniformly distributed bivalued random variable that is independent of \mathbf{r}^i . Thus, P[A(U) = 1] = 1/2, so $A \epsilon$ -distinguishes f(S) and U.

For the final step in the 3-way equivalence, we have to weaken the error bound.

Theorem 3 Suppose $\epsilon > 0$ and algorithm $A \epsilon$ -distinguishes f(S) and U. For each $1 \le i \le \ell$ and $c \in \{0, 1\}$, define algorithm $N_i^c(z_1, \ldots, z_{i-1})$ as follows:

- 1. Flip coins to generate $\ell i + 1$ random bits r_i, \ldots, r_ℓ .
- 2. Let $v = \begin{cases} 1 \text{ if } A(z_1, \dots, z_{i-1}, r_i, \dots, r_{\ell}) = 1; \\ 0 \text{ otherwise.} \end{cases}$
- 3. Output $v \oplus r_i \oplus c$.

Then there exist m and c for which algorithm N_m^c is an ϵ/ℓ -next bit predictor for bit m of f.

Proof: Let $(Z_1, \ldots, Z_\ell) = f(S)$ and $(R_1, \ldots, R_\ell) = U$ be random variables, and let $D_i = (Z_1, \ldots, Z_i, R_{i+1}, \ldots, R_\ell)$. D_i is the distribution on ℓ -bit sequences that results from choosing the first *i* bits according to f(S) and choosing the last $\ell - i$ bits uniformly. Clearly $D_0 = U$ and $D_\ell = f(S)$.

Let $p_i = P[A(D_i) = 1], 0 \le i \le \ell$. Since $A \epsilon$ -distinguishes D_ℓ and D_0 , we have $|p_\ell - p_0| \ge \epsilon$. Hence, there exists $m, 1 \le m \le \ell$, such that $|p_m - p_{m-1}| \ge \epsilon/\ell$. We show that the probability that N_m^c correctly predicts bit m for f is $1/2 + (p_m - p_{m-1})$ if c = 1 and $1/2 + (p_{m-1} - p_m)$ if c = 0. It will follow that either N_m^0 or N_m^1 correctly predicts bit m with probability $1/2 + |p_m - p_{m-1}| \ge \epsilon/\ell$.

Consider the following experiments. In each, we choose an ℓ -tuple (z_1, \ldots, z_ℓ) according to f(S) and an ℓ -tuple (r_1, \ldots, r_ℓ) according to U.

```
Experiment E_0: Succeed if A(z_1, \ldots, z_{m-1}, \boxed{z_m}, r_{m+1}, \ldots, r_{\ell}) = 1.

Experiment E_1: Succeed if A(z_1, \ldots, z_{m-1}, \boxed{\neg z_m}, r_{m+1}, \ldots, r_{\ell}) = 1.

Experiment E_2: Succeed if A(z_1, \ldots, z_{m-1}, \boxed{r_m}, r_{m+1}, \ldots, r_{\ell}) = 1.
```

Let q_j be the probability that experiment E_j succeeds, where j = 0, 1, 2. Clearly $q_2 = (q_0 + q_1)/2$ since $r_m = z_m$ is equally likely as $r_m = \neg z_m$.

Now, the inputs to A in experiment E_0 are distributed according to D_m , so $p_m = q_0$. Also, the inputs to A in experiment E_2 are distributed according to D_{m-1} , so $p_{m-1} = q_2$. Differencing, we get $p_m - p_{m-1} = q_0 - q_2 = (q_0 - q_1)/2$.

We now analyze the probability that N_m^c correctly predicts bit m of f(S). Assume without loss of generality that A's output is in $\{0, 1\}$. A particular run of $N_m^c(z_1, \ldots, z_{m-1})$ correctly predicts z_m if

$$A(z_1, \dots, z_{m-1}, \boxed{r_m}, \dots, r_\ell) \oplus r_m \oplus c = z_m$$
⁽¹⁾

If $r_m = z_m$, (1) simplifies to

$$A(z_1, \dots, z_{m-1}, \boxed{z_m}, \dots, r_\ell) = c,$$
⁽²⁾

and if $r_m = \neg z_m$, (1) simplifies to

$$A(z_1, \dots, z_{m-1}, \neg z_m), \dots, r_\ell) = \neg c.$$
(3)

Let OK_m^c be the event that $N_m^c(Z_1, \ldots, Z_{m-1}) = Z_m$, i.e., that N_m^c correctly predicts bit m for f. From (2), it follows that

$$P[OK_m^c | R_m = Z_m] = \begin{cases} q_0 & \text{if } c = 1\\ (1 - q_0) & \text{if } c = 0 \end{cases}$$

for in that case the inputs to A are distributed according to experiment E_0 . Similarly, from (3), it follows that

$$P[OK_m^c \mid R_m = \neg Z_m] = \begin{cases} q_1 & \text{if } \neg c = 1\\ (1 - q_1) & \text{if } \neg c = 0 \end{cases}$$

for in that case the inputs to A are distributed according to experiment E_1 . Since $P[R_m = Z_m] = P[R_m = \neg Z_m] = 1/2$, we have

$$P[OK_m^c] = \frac{1}{2} \cdot P[OK_m^c \mid R_m = Z_m] + \frac{1}{2} \cdot P[OK_m^c \mid R_m = \neg Z_m]$$
$$= \begin{cases} q_0/2 + (1 - q_1)/2 = 1/2 + p_m - p_{m-1} & \text{if } c = 1\\ q_1/2 + (1 - q_0)/2 = 1/2 + p_{m-1} - p_m & \text{if } c = 0. \end{cases}$$

Thus, $P[OK_m^c] = 1/2 + |p_m - p_{m-1}| \ge \epsilon/\ell$ for some $c \in \{0, 1\}$, as desired.

2 BBS Generator

We now give a PRSG due to Blum, Blum, and Shub for which the problem distinguishing its outputs from the uniform distribution is closely related to the difficulty of determining whether a number with Jacobi symbol 1 is a quadratic residue modulo a certain kind of composite number called a Blum integer. The latter problem is believed to be computationally hard. First some background.

A Blum prime is a prime number p such that $p \equiv 3 \pmod{4}$. A Blum integer is a number n = pq, where p and q are Blum primes. Blum primes and Blum integers have the important property that every quadratic residue a has a square root y which is itself a quadratic residue. We call such a y a principal square root of a and denote it by \sqrt{a} .

Lemma 4 Let p be a Blum prime, and let a be a quadratic residue modulo p. Then $y = a^{(p+1)/4} \mod p$ is a principal square root of a modulo p.

Proof: We must show that, modulo p, y is a square root of a and y is a quadratic residue. By the Euler criterion [Theorem 2, handout 15], since a is a quadratic residue modulo p, we have $a^{(p-1)/2} \equiv 1 \pmod{p}$. Hence, $y^2 \equiv (a^{(p+1)/4})^2 \equiv aa^{(p-1)/2} \equiv a \pmod{p}$, so y is a square root of a modulo p. Applying the Euler criterion now to y, we have

$$y^{(p-1)/2} \equiv \left(a^{(p+1)/4}\right)^{(p-1)/2} \equiv \left(a^{(p-1)/2}\right)^{(p+1)/4} \equiv 1^{(p+1)/4} \equiv 1 \pmod{p}.$$

Hence, y is a quadratic residue modulo p.

Theorem 5 Let n = pq be a Blum integer, and let a be a quadratic residue modulo n. Then a has four square roots modulo n, exactly one of which is a principal square root.

Proof: By Lemma 4, a has a principal square root u modulo p and a principal square root v modulo q. Using the Chinese remainder theorem, we can find x that solves the equations

$$x \equiv \pm u \pmod{p}$$
$$x \equiv \pm v \pmod{q}$$

for each of the four choices of signs in the two equations, yielding 4 square roots of a modulo n. It is easily shown that the x that results from the +, + choice is a quadratic residue modulo n, and the others are not.

From Theorem 4, it follows that the mapping $b \mapsto b^2 \mod n$ is a bijection from the set of quadratic residues modulo n onto itself. (A *bijection* is a function that is 1–1 and onto.)

Definition: The Blum-Blum-Shub generator BBS is defined by a Blum integer n = pq and an integer ℓ . It is a (\mathbf{Z}_n^*, ℓ) -PRSG defined as follows: Given a seed $s_0 \in \mathbf{Z}_n^*$, we define a sequence $s_1, s_2, s_3, \ldots, s_\ell$, where $s_i = s_{i-1}^2 \mod n$ for $i = 1, \ldots, \ell$. The ℓ -bit output sequence is $b_1, b_2, b_3, \ldots, b_\ell$, where $b_i = s_i \mod 2$.

Note that any s_m uniquely determines the entire sequence s_1, \ldots, s_ℓ and corresponding output bits. Clearly, s_m determines s_{m+1} since $s_{m+1} = s_m^2 \mod n$. But likewise, s_m determines s_{m-1} since $s_{m-1} = \sqrt{s_m}$, the principal square root of s_m modulo n, which is unique by Theorem 5.

3 Security of BBS

Theorem 6 Suppose there is a probabilistic algorithm A that ϵ -distinguishes BBS(\mathbf{Z}_n^*) from U. Then there is a probabilistic algorithm Q(x) that correctly determines with probability at least $\epsilon' = \epsilon/\ell$ whether or not an input $x \in \mathbf{Z}_n^*$ with Jacobi symbol $(\frac{x}{n}) = 1$ is a quadratic residue modulo n.

Proof: From A, one easily constructs an algorithm \hat{A} that reverses its input and then applies A. $\hat{A} \epsilon$ -distinguishes the reverse of $BBS(\mathbf{Z}_n^*)$ from U. By Theorem 3, there is an ϵ' -next bit predictor N_m for bit $\ell - m + 1$ of BBS reversed. Thus, $N_m(b_\ell, b_{\ell-1}, \ldots, b_{m+1})$ correctly outputs b_m with probability at least $1/2 + \epsilon'$, where (b_1, \ldots, b_ℓ) is the (unreversed) output from BBS(\mathbf{Z}_n^*). We now describe algorithm Q(x), assuming $x \in \mathbb{Z}_n^*$ and $\left(\frac{x}{n}\right) = 1$. Using x as a seed, compute $(b_1, \ldots, b_\ell) = BBS(x)$ and let $b = N_m(b_{\ell-m}, b_{\ell-m-1}, \ldots, b_1)$. Output "quadratic residue" if $b = x \mod 2$ and "non-residue" otherwise.

To see that this works, observe first that $N_m(b_{\ell-m}, b_{\ell-m-1}, \ldots, b_1)$ correctly predicts b_0 with probability at least $1/2 + \epsilon'$, where $b_0 = (\sqrt{x^2} \mod n) \mod 2$. This is because we could in principle let $s_{m+1} = x^2 \mod n$ and then work backwards defining $s_m = \sqrt{s_{m+1}} \mod n$, $s_{m-1} = \sqrt{s_m} \mod n$, \ldots , $s_0 = \sqrt{s_1} \mod n$. It follows that $b_0, \ldots, b_{\ell-m}$ are the last $\ell - m + 1$ bits of BBS (s_0) , and b_0 is the bit predicted by N_m .

Now, x and -x are clearly square roots of s_{m+1} . We show that they both have Jacobi symbol 1. Since $\left(\frac{x}{n}\right) = \left(\frac{x}{p}\right) \cdot \left(\frac{x}{q}\right) = 1$, then either $\left(\frac{x}{p}\right) = \left(\frac{x}{q}\right) = 1$ or $\left(\frac{x}{p}\right) = \left(\frac{x}{q}\right) = -1$. But because p and q are Blum primes, -1 is a quadratic non-residue modulo both p and q, so $\left(\frac{-1}{p}\right) = \left(\frac{-1}{q}\right) = -1$. It follows that $\left(\frac{-x}{n}\right) = 1$. Hence, $x = \pm \sqrt{s_{m+1}}$, so exactly one of x and -x is a quadratic residue.

Since n is odd, $x \mod n$ and $-x \mod n$ have opposite parity. Hence, x is a quadratic residue iff x and $\sqrt{s_{m+1}}$ have the same parity. But N_m outputs $\sqrt{s_{m+1}} \mod 2$ with probability $1/2 + \epsilon'$, so it follows that Q correctly determines the quadratic residuosity of its argument with probability $1/2 + \epsilon'$.