YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

CPSC 467: Cryptography and Computer Security

Study Guide to the Final Exam

Exam Topics

You are responsible for the topics covered in the whole course. Emphasis will be on the material in lecture notes 12–25 as well as the concepts used in homework assignments 5–9.

Not everything in the lecture notes was covered in class, but you should read any slides that were skipped over to make sure you have a general understanding of what they are about.

You may find handouts <u>11</u> (number theory), <u>12</u> (linear congruence equations), and <u>13</u> (pseudorandom number generations) useful for filling in details that may have been glossed over in class.

Index to the Lecture Notes

Below is a list of all sections and subsections from lecture notes 12–25. You can use this as an index to the lecture notes and as a high-level overview of the course since the midterm study guide.

1	Using Digital Signatures	[lecture 12]
2	Signing Message Digests 2.1 Signed encrypted messages	[lecture 12] [lecture 12]
3	Practical Signature Algorithms3.1 ElGamal digital signature scheme3.2 Digital signature algorithm (DSA)	[lecture 12] [lecture 12] [lecture 12]
4	Elliptic Curves Basics	[lecture 13]
5	Elliptic Curve Cryptography	[lecture 13]
6	Computing in \mathbb{Z}_n 6.1Modular multiplication6.2Modular inverses6.3Extended Euclidean algorithm	[lecture 14] [lecture 14] [lecture 14] [lecture 14]
7	Generating RSA Encryption and Decryption Exponents	[lecture 14]
8	Euler's Theorem	[lecture 14]
9	Generating RSA Modulus9.1 Finding primes by guess and check9.2 Density of primes	[lecture 14] [lecture 14] [lecture 14]
10	 Primitive Roots 10.1 Properties of primitive roots 10.2 Lucas test 10.3 Special form primes 	[lecture 15] [lecture 15] [lecture 15] [lecture 15]
11	Functions That Look Random	[lecture 15]

12	Cryptographic Hash Functions 12.1 Properties of random functions	[lecture 15] [lecture 15]	
	12.2 Message digest functions	[lecture 15]	
13	Properties of Hash Functions13.1 Hash functions do not always look random13.2 Relations among hash function properties	[lecture 16] [lecture 16] [lecture 16]	
14	Constructing New Hash Functions from Old14.1 Extending a hash function14.2 A general chaining method	[lecture 16] [lecture 16] [lecture 16]	
15	Common Hash Functions 15.1 SHA-2 15.2 SHA-3 15.3 MD5	[lecture 16] [lecture 16] [lecture 16] [lecture 16]	
16	Appendix: Birthday Attack Revisited	[lecture 16]	
17	Hashed Data Structures17.1 Motivation: Peer-to-peer file sharing networks17.2 Hash lists17.3 Hash Trees	[lecture 17] [lecture 17] [lecture 17] [lecture 17]	
18	Lamport One-Time Signatures	[lecture 17]	
19	Merkle Signatures	[lecture 17]	
20	 Authentication Using Passwords 20.1 Authentication problem 20.2 Passwords authentication schemes 20.3 Secure password storage 20.4 Dictionary attacks 	[lecture 17] [lecture 17] [lecture 17] [lecture 17] [lecture 17]	
21	Authentication While Preventing Impersonation [lecture 18]		
	21.1 Challenge-response authentication protocols21.2 Authentication using zero knowledge interactive proofs	[lecture 18] [lecture 18]	
22	 Quadratic Residues, Squares, and Square Roots 22.1 Modular square roots 22.2 Square roots modulo n 22.3 Square roots modulo an odd prime p 22.4 Square roots modulo the product of two odd primes 	[lecture 18] [lecture 18] [lecture 18] [lecture 18] [lecture 18]	
23	Zero Knowledge Protocols23.1 Feige-Fiat-Shamir Authentication Protocol23.2 Secret cave protocol	[lecture 18] [lecture 18] [lecture 18]	
24	Chinese Remainder Theorem	[lecture 18]	
25	 Zero Knowledge Interactive Proofs (ZKIP) 25.1 ZKIP for graph isomorphism 25.2 Feige-Fiat-Shamir Authentication Protocol 25.3 Abstraction from two ZKIP examples 	[lecture 19] [lecture 19] [lecture 19] [lecture 19] [lecture 19]	
	25.3 Abstraction from two ZKIP examples	llectu	

26	Information Splitting	[lecture 19]		
27	Public Key Infrastructure (PKI) and Trust	[lecture 19]		
28	Formalizing Zero Knowledge28.1 Computational Knowledge28.2 Composing Zero-Knowledge Proofs	[lecture 20] [lecture 20] [lecture 20]		
29	Quadratic Residues Revisited29.1Euler criterion29.2QR Probabilistic Cryptosystem29.3Summary	[lecture 20] [lecture 20] [lecture 20] [lecture 20]		
30	Appendix: Finding Square Roots30.1 Square roots modulo special primes30.2 Square roots modulo general odd primes	[lecture 20] [lecture 20] [lecture 20]		
31	Secure Random Sequence Generators31.1 Pseudorandom sequence generators31.2 Looking random	[lecture 21] [lecture 21] [lecture 21]		
32	Similarity of Probability Distributions32.1 Cryptographically secure PRSG32.2 Indistinguishability	[lecture 21] [lecture 21] [lecture 21]		
33	 The Legendre and Jacobi Symbols 33.1 The Legendre symbol 33.2 Jacobi symbol 33.3 Computing the Jacobi symbol 	[lecture 21] [lecture 21] [lecture 21] [lecture 21]		
34	BBS Pseudorandom Sequence Generator	[lecture 22]		
35	Secret Splitting	[lecture 22]		
36	Shamir's Secret Splitting Scheme36.1 Secret Splitting with Dishonest Parties	[lecture 22] [lecture 22]		
37	Appendix: Security of BBS [lecture			
38	3 Mutual Privacy-Preserving Protocols			
39	Bit Commitment Problem39.1Bit Commitment Using QR Cryptosystem39.2Bit Commitment Using Symmetric Cryptography39.3Bit Commitment Using Hash Functions39.4Bit Commitment Using Pseudorandom Sequence Generators	[lecture 23] [lecture 23] [lecture 23] [lecture 23] [lecture 23]		
40	Coin-Flipping	[lecture 23]		
41	Appendix: Formalization of Bit Commitment Schemes	[lecture 23]		
42	Locked Boxes 42.1 Locked Box Paradigm 42.2 Locked Box Implementation	[lecture 24] [lecture 24] [lecture 24]		
43	Oblivious Transfer [lecture 2-			
44	The Millionaires' Problem	[lecture 24]		

45	Privacy-Preserving Boolean Function Evaluation		[lecture 24]
	45.1	Boolean circuits	[lecture 24]
	45.2	Implementation Using Value Shares	[lecture 24]
	45.3	Implementation Using Garbled Circuits	[lecture 24]
46	App	endix: Problems at Least as Hard as Factoring	[lecture 24]
47	Encryption with Special Properties		[lecture 25]
	47.1	Homomorphic Encryption	[lecture 25]
	47.2	Encryption with Other Properties	[lecture 25]
48	8 Bitcoins		[lecture 25]