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Reading assignment

Read Chapter 1 of Christof Paar and Jan Pelzl,Understanding
Cryptography [PP10].
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Secret Message Transmission
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Secret message transmission problem

Alice wants to send Bob a private message m over the internet.

Eve is an eavesdropper who listens in and wants to learn m.

Alice and Bob want m to remain private and unknown to Eve.

Image credit: Derived from image by Frank Kagan Gürkaynak,
http://www.iis.ee.ethz.ch/~kgf/acacia/fig/alice_bob.png
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Solution using encryption

A symmetric cryptosystem (sometimes called a private-key or
one-key system) is a pair of efficiently-computable functions E and
D such that

I E (k ,m) encrypts plaintext message m using key k to produce
a ciphertext c.

I D(k , c) decrypts ciphertext c using k to produce a message m.

Requirements:

Correctness D(k ,E (k ,m)) = m for all keys k and all messages m.

Security Given c = E (k ,m), it is hard to find m without
knowing k .
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The protocol

Protocol:

1. Alice and Bob share a common secret key k .

2. Alice computes c = E (k ,m) and sends c to Bob.

3. Bob receives c ′, computes m′ = D(k , c ′), and assumes m′ to
be Alice’s message.

Assumptions:

I Eve learns nothing except for c during the protocol.

I The channel is perfect, so c ′ = c . The real world is not so
perfect, so we must ask what happens if c ′ 6= c?

I Eve is a passive eavesdropper who can read c but not modify
it.
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Requirements

What do we require of E , D, and the computing environment?

I Given c , it is hard to find m without also knowing k.

I k is not initially known to Eve.

I Eve can guess k with at most negligible success probability.
(k must be chosen randomly from a large key space.)

I Alice and Bob successfully keep k secret.
(Their computers have not been compromised; Eve can’t find
k on their computers even if she is a legitimate user, etc.)

I Eve can’t obtain k in other ways, e.g., by social engineering,
using binoculars to watch Alice or Bob’s keyboard, etc.
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Eve’s side of the story

Cartoon by Randall Munroe, https://www.xkcd.com/177/
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Symmetric Cryptography
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Formalizing what a cryptosystem is

A symmetric cryptosystem consists of

I a set M of plaintext messages,

I a set C of ciphertexts,

I a set K of keys,

I an encryption function E : K ×M→ C
I a decryption function D : K × C →M.

We often write Ek(m) = E (k ,m) and Dk(c) = D(k, c).
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Desired properties

Decipherability ∀m ∈M, ∀k ∈ K,Dk(Ek(m)) = m. In other
words, Dk is the left inverse of Ek .

Feasibility E and D, regarded as functions of two arguments,
should be computable using a feasible amount of
time and storage.

Security (weak) It should be difficult to find m given c = Ek(m)
without knowing k .
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What’s wrong with this definition?

This definition leaves three important questions unanswered?

1. What is a “feasible” amount of time and storage?

2. What does it mean to be “difficult” to find m?

3. What does it mean to not “know” k?
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Practical considerations

These questions are all critical in practice.

1. E and D must be practically computable by Alice and Bob or
the cryptosystem can’t be used. For most applications, this
means computable in milliseconds, not minutes or days.

2. The confidentiality of m must be preserved, possibly for years,
after Eve discovers c . How long is long enough?

3. The only way to be certain that Eve does not know k is to
choose k at random from a random source to which Eve has
no access. This is easy to get wrong.
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Caesar cipher
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Encoding single letters

The Caesar cipher is said to go back to Roman times.

It encodes the 26 letters of the Roman alphabet A,B, . . . ,Z .

Assume the letters are represented as A = 0, B = 1, . . . , Z = 25.

M = C = K = {0, . . . , 25}.

Ek(m) = (m + k) mod 26

Dk(c) = (c − k) mod 26.

Formally, we have a cryptosystem for 1-letter messages.
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Encoding longer messages

The Caesar cipher encrypts longer messages by encrypting each
letter separately.

How do we formalize this?

I What is the message space now?

I What is the ciphertext space?

I What is the key space?

I What is the encryption function?

I What is the decryption function?
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Caesar cipher formally defined

For arbitrary strings, we have

M′ = C′ =M∗

where M∗ is the transitive closure of M.

That is, M∗ consists of all sequences of 0 or more letters from M.

The encryption and decryption for length-r sequences are

E ′k(m1 . . .mr ) = Ek(m1) . . .Ek(mr )

D ′k(c1 . . . cr ) = Dk(c1) . . .Dk(cr ).

CPSC 467, Lecture 3 19/72



Outline Secret Messages Symmetric Crypto Caesar Classical Appendix Polyalphabetic Cryptanalysis References

A brute force attack on the Casear cipher

Ciphertext HWWXE UXWH

Decryption key Plaintext

k = 0 hwwxe uxwh

k = 1 gvvwd twvg

k = 2 fuuvc svuf

k = 3 ettub rute

k = 4 dssta qtsd

k = 5 crrsz psrc

· · · · · ·

Which is the correct key?
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Recognizing the correct key

Caesar’s last words, “Et tu, Brute?”
[From William Shakespeare’s play, Julius Casear, Act 3, Scene 1.]

Ciphertext HWWXE UXWH

Decryption key Plaintext

k = 0 hwwxe uxwh

k = 1 gvvwd twvg

k = 2 fuuvc svuf

k = 3 ettub rute

k = 4 dssta qtsd

k = 5 crrsz psrc

· · · · · ·
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How do you know when you’ve found the correct key?

You don’t always know!

Suppose you intercept the ciphertext JXQ.
You quickly discover that E3(GUN) = JXQ.
But is k = 3 and is GUN the correct decryption?

You then discover that E23(MAT) = JXQ.
Now you are in a quandary. Which decryption is correct?

Have you broken the system or haven’t you?

You haven’t found the plaintext for sure, but you’ve reduced the
possibilities down to a small set.

CPSC 467, Lecture 3 22/72



Outline Secret Messages Symmetric Crypto Caesar Classical Appendix Polyalphabetic Cryptanalysis References

Terminology

A shift cipher uses a letter substitution defined by a rotation of the
alphabet.

Any cipher that uses a substitution to replace a plaintext letter by
a ciphertext letter is called a substitution cipher. A shift cipher is a
special case of a substitution cipher.

Any cipher that encrypts a message by applying the same
substitution to each letter of the message is called a
monoalphabetic cipher.
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Some other classical ciphers
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Generalized shift ciphers

Affine ciphers

Affine ciphers generalize simple shift ciphers such as Caesar.

Let α and β be two integers with gcd(α, 26) = 1.

A key is a pair k = (α, β).
There are 12 possible choices for α (1, 3, 5, 7, 9, 11, 15, 17, 19,
21, 23, 25) and 26 possibilites for β, so |K| = 12× 26 = 312.

Encryption: Ek(m) = αm + β mod 26.

Decryption: Dk(c) = α−1(c − β) mod 26.

Here, α−1 is the multiplicative inverse of α in the ring of integers
Z26. For example, 5−1 = 21 since 21× 5 = 105 ≡ 1 (mod 26).

α−1 exists precisely when gcd(α, 26) = 1.
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Polyalphabetic ciphers

Polyalphabetic ciphers

Another way to strengthen substitution ciphers is to use different
substitutions for different letter positions.

I Choose r different alphabet permutations π1, . . . , πr for some
number r .

I Use π1 for the first letter of m, π2 for the second letter, etc.

I Repeat this sequence after every r letters.

While this is much harder to break than monoalphabetic ciphers,
letter frequency analysis can still be used.

Every r th letter is encrypted using the same permutation, so the
submessage consisting of just those letters still exhibits normal
English language letter frequencies.
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Polyalphabetic ciphers

Vigenère cipher

The Vigenère cipher is a polyalphabetic cipher in which the
number of different substitutions r is also part of the key.
Thus, the adversary must determine r as well as discover the
different substitutions.

All polyalphabetic ciphers can be broken using letter frequency
analysis, but they are secure enough against manual attacks to
have been used at various times in the past.

The German Enigma encryption machine used in the second world
war is also based on a polyalphabetic cipher.
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Polygraphic Ciphers

Hill cipher

A polygraphic cipher encrypts several letters at a time.
It tends to mask the letter frequencies, making it much harder to
break.

The Hill cipher is such an example based on linear algebra.

I The key is, say, a non-singular 3× 3 matrix K .

I The message m is divided into vectors mi of 3 letters each.

I Encryption is just the matrix-vector product ci = Kmi .

I Decryption uses the matrix inverse, mi = K−1ci .
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Polygraphic Ciphers

An attack on the Hill cipher

A known plaintext attack assumes the attacker has prior knowledge
of some plaintext-ciphertext pairs (m1, c1), (m2, c2), . . ..

The Hill cipher succumbs to a known plaintext attack.

Given three linearly independent vectors m1, m2, and m3 and the
corresponding ciphertexts ci = Kmi , i = 1, 2, 3, it is
straightforward to solve for K .
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Polygraphic Ciphers

Playfair cipher

The Playfair cipher, invented by Charles Wheatstone in 1854 but
popularized by Lord Lyon Playfair, is another example of a
polygraphic cipher [MvOV96, chapter 7, pp. 239-240] and [Wik].

Here, the key is a passphrase from which one constructs a 5× 5
matrix of letters. Pairs of plaintext letters are then located in the
matrix and used to produce a corresponding pair of ciphertext
letters.
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Polygraphic Ciphers

How Playfair works

Construct the matrix from the passphrase.

I Construct the matrix by writing the passphrase into the
matrix cells from left to right and top to bottom.

I Omit any letters that have previously been used.

I Fill remaining cells with the letters of the alphabet that do
not occur in the passphrase, in alphabetical order.

I In carrying out this process, “I” and “J” are identified, so we
are effectively working over a 25-character alphabet.

Thus, each letter of the 25-character alphabet occurs exactly once
in the resulting matrix.
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Polygraphic Ciphers

Example Playfair matrix

Let the passphrase be

“CRYPTOGRAPHY REQUIRES STRONG KEYS”.

The resulting matrix is

C R Y P T
O G A H E
Q U I/J S N
K B D F L
M V W X Z

First occurrence of each letter in the passphrase shown in orange:

“CRYPTOGRAPHY REQUIRES STRONG KEYS”.

Letters not occurring in the passphrase: BDFLMVWXZ.
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Polygraphic Ciphers

Encrypting in Playfair: preparing the message
To encrypt a message using Playfair:

I Construct the matrix.

I Remove spaces and pad the message with a trailing ’X’, if
necessary, to make the length even.

I Break up the message into pairs of letters.

I In case a pair of identical letters is about to be produced,
insert an “X” to prevent that.

Examples:

I “MEET ME AT THE SUBWAY” becomes “ME” “ET” “ME”
“AT” “TH” “ES” “UB” “WA” “YX”.

I “A GOOD BOOK” becomes “AG”, “OX”, “OD” “BO”,
“OK”.
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Polygraphic Ciphers

Encrypting in Playfair: substituting the pairs
To encrypt pair ab, look at rectangle with a and b at its corners.

1. If a and b appear in different rows and different columns,
replace each by the letter at the opposite end of the
corresponding row. Example: replace “AT” by “EY”:

Y P T
A H E

2. If a and b appear in the same row, then replace a by the next
letter circularly to its right in the row, and similarly for b. For
example, the encryption of “LK” is “KB”.

3. If a and b appear in the same column, then replace a by the
next letter circularly down in the column, and similarly for b.

Example: “MEET ME AT THE SUBWAY” encrypts as
“ZONEZOEYPEHNBVYIPW”.
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Polygraphic Ciphers

Decrypting in Playfair

Decryption is by a similar procedure.

In decrypting, one must manually remove the spurious occurrences
of “X” and resolve the “I/J” ambiguities.

See Trappe and Washington [TW06] or Wikipedia [Wik] for a
discussion of how the system was successfully attacked by French
cryptanalyst Georges Painvin and the Bureau du Chiffre.
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Appendix
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Polyalphabetic Substitution Ciphers
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Classical polyalphabetic ciphers

Polyalphabetic ciphers

Recall: A polyalphabetic substitution cipher allows a different
substitution to be applied to a plaintext letter, depending on the
letter’s position i in the message.

The Vigenère cipher presented last time is a simple example.

The key is the tuple (r , k0, . . . , kr−1).

The i plaintext letter is encrypted using the Caesar cipher with key
ks , where s = i mod r .
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Classical polyalphabetic ciphers

Vigenère example

Suppose k = (3, 5, 2, 3) and m =“et tu brute”.

Plaintext ettub rute

Sub-key 52352 3523

Ciphertext jvwzd uzvh

CPSC 467, Lecture 3 39/72



Outline Secret Messages Symmetric Crypto Caesar Classical Appendix Polyalphabetic Cryptanalysis References

Rotor machines

Rotor machines

Rotor machines are mechanical polyalphabetic cipher devices that
generalize Vigenère ciphers, both in having a very large value of r
and in their method of generating the substitutions from the letter
positions.

They were invented about 100 years ago and were used into the
1980’s.

See Wikipedia page on rotor machines for a summary of the many
such machines that have been used during the past century.
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Rotor machines

The German Enigma machines
I Enigma machines are rotor

machines invented by German
engineer Arthur Scherbius.

I They played an important role
during World War 2.

I The Germans believed their Enigma
machines were unbreakable.

I The Allies, with great effort,
succeeded in breaking them and in
reading many top-secret military
communications.

I This is said to have changed the
course of the war.

Image from Wikipedia
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Rotor machines

How a rotor machine works

I Uses electrical switches to create a permutation of 26 input
wires to 26 output wires.

I Each input wire is attached to a key on a keyboard.

I Each output wire is attached to a lamp.

I The keys are associated with letters just like on a computer
keyboard.

I Each lamp is also labeled by a letter from the alphabet.

I Pressing a key on the keyboard causes a lamp to light,
indicating the corresponding ciphertext character.

The operator types the message one character at a time and writes
down the letter corresponding to the illuminated lamp.

The same process works for decryption since Eki = Dki .
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Rotor machines

Keystream generation

The encryption permutation.

I Each rotor is individually wired to produce some
random-looking fixed permutation π.

I Several rotors stacked together produce the composition of
the permutations implemented by the individual rotors.

I In addition, the rotors can rotate relative to each other,
implementing in effect a rotation permutation (like the Caeser
cipher uses).
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Rotor machines

Keystream generation (cont.)

Let ρk(x) = (x + k) mod 26. Then rotor in position k implements
permutation ρkπρ

−1
k . (Note that ρ−1k = ρ−k .)

Several rotors stacked together implement the composition of the
permutations computed by each.

For example, three rotors implementing permutations π1, π2, and
π3, placed in positions r1, r2, and r3, respectively, would produce
the permutation

ρr1 · π1 · ρ−r1 · ρr2 · π2 · ρ−r2 · ρr3 · π3 · ρ−r3
= ρr1 · π1 · ρr2−r1 · π2 · ρr3−r2 · π3 · ρ−r3 (1)
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Rotor machines

Changing the permutation

After each letter is typed, some of the rotors change position,
much like the mechanical odometer used in older cars.

The period before the rotor positions repeat is quite long, allowing
long messages to be sent without repeating the same permutation.

Thus, a rotor machine is implements a polyalphabetic substitution
cipher with a very long period.

Unlike a pure polyalphabetic cipher, the successive permutations
until the cycle repeats are not independent of each other but are
related by equation (1).

This gives the first toehold into methods for breaking the cipher
(which are far beyond the scope of this course).
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Rotor machines

History

Several different kinds of rotor machines were built and used, both
by the Germans and by others, some of which work somewhat
differently from what I described above.

However, the basic principles are the same.

The interested reader can find much detailed material on the web
by searching for “enigma cipher machine” and “rotor cipher
machine”. Nice descriptions may be found at
http://en.wikipedia.org/wiki/Enigma_machine and
http://www.quadibloc.com/crypto/intro.htm.
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One-time pad

Vernam cipher

The Vernam cipher (one-time pad) is an information-theoretically
secure cryptosystem.

This means that Eve, knowing only the ciphertext, can extract
absolutely no information about the plaintex other than its length.

We will explore the concept of information-theoretic security later.
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One-time pad

Exclusive-or on bits
The Vernam cipher is based on exclusive-or (XOR), which we write
as ⊕.

x ⊕ y is true when exactly one of x and y is true.
x ⊕ y is false when x and y are both true or both false.

Exclusive-or is just sum modulo two if 1 represents true and 0
represents false.

x ⊕ y = (x + y) mod 2.

XOR is associative and commutative. 0 is the identity element.

k ⊕ 0 = 0⊕ k = k

XOR is its own inverse.
k ⊕ k = 0
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One-time pad

Informal description

The one-time pad encrypts a message m by XORing it with the
key k , which must be as long as m.

Assume both m and k are represented by strings of bits. Then
ciphertext bit ci = mi ⊕ ki .

Note that ci = mi if ki = 0, and ci = ¬mi if ki = 1.

Decryption is the same, i.e., mi = ci ⊕ ki .
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One-time pad

The one-time pad cryptosystem formally defined

M = C = K = {0, 1}r for some length r .

Ek(m) = Dk(m) = k ⊕m, where ⊕ is applied to corresponding bits
of k and m.

It works because

Dk(Ek(m)) = k ⊕ (k ⊕m) = (k ⊕ k)⊕m = 0⊕m = m.
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One-time pad

Security

Like the 1-letter Caesar cipher, for given m and c , there is exactly
one key k such that Ek(m) = c (namely, k = m ⊕ c).

For fixed c , m varies over all possible messages as k ranges over all
possible keys, so c gives no information about m.

It will follow that the one-time pad is information-theoretically
secure.

What more is there to prove?
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One-time pad

Importance of the Vernam cipher

It is important because

I it is sometimes used in practice;

I it is the basis for many stream ciphers, where the truly
random key is replaced by a pseudo-random bit string.
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One-time pad

Attraction of one-time pad

The one-time pad would seem to be the perfect cryptosystem.

I It works for messages of any length (by choosing a key of the
same length).

I It is easy to encrypt and decrypt.

I It is information-theoretically secure.

In fact, it is sometimes used for highly sensitive data.
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One-time pad

Drawbacks of one-time pad

It has two major drawbacks:

1. The key k must be as long as the message to be encrypted.

2. The same key must never be used more than once. (Hence
the term “one-time”.)

Together, these make the problem of key distribution and key
management very difficult.

CPSC 467, Lecture 3 54/72



Outline Secret Messages Symmetric Crypto Caesar Classical Appendix Polyalphabetic Cryptanalysis References

One-time pad

Why the key cannot be reused

If Eve knows just one plaintext-ciphertext pair (m1, c1), then she
can recover the key k = m1 ⊕ c1.
This allows her to decrypt all future messages sent with that key.

Even in a ciphertext-only situation, if Eve has two ciphertexts c1
and c2 encrypted by the same key k , she can gain significant
partial information about the corresponding messages m1 and m2.

In particular, she can compute m1 ⊕m2 without knowing either m1

or m2 since

m1 ⊕m2 = (c1 ⊕ k)⊕ (c2 ⊕ k) = c1 ⊕ c2.
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One-time pad

How knowing m1 ⊕m2 might help an attacker

Fact (important property of ⊕)

For bits b1 and b2, b1 ⊕ b2 = 0 if and only if b1 = b2.

Hence, blocks of 0’s in m1 ⊕m2 indicate regions where the two
messages m1 and m2 are identical.

That information, together with other information Eve might have
about the likely content of the messages, may be enough for her to
seriously compromise the secrecy of the data.
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Cryptanalysis
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Caesar

Breaking the Caesar: A brute force attack

We saw last time an example of breaking the Caesar cipher using a
brute force attack.

Brute force attack means trying every possible key to see which
one “works”.

Determining which is the correct key is the problem.

For our Caesar cipher example, there were only 26 possible keys;
hence only 26 possible decryptions of the given ciphertext HWWXE
UXWH, only one of which “makes sense”.
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Breaking the Caesar cipher: Extending these ideas

The longer the correct message, the more likely that only one key
results in a sensible decryption.

For example, suppose the ciphertext were “EXB JXQ”.
We saw two possible keys for “JXQ” — 3 and 23.
Trying them both we get:

k = 3: D3(EXB JXQ) = BUY GUN.

k = 23: D23(EXB JXQ) = HAE MAT.

Latter is nonsense, so we know k = 3 and the message is “BUY
GUN”.
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Caesar

Breaking the Caesar cipher: Conclusion

Let n be the message length.

n = 1: The Caesar cipher is information-theoretically secure!

n > 1: The Caesar cipher is only partially secure or
completely breakable, depending on message length
and redundancy present in the message.

How long is long enough for a brute force attack to succeed?

There is a whole theory of redundancy of natural language that allows one to calculate

a number called the “unicity distance” for a given cryptosystem. If a message is longer

than the unicity distance, there is a high probability that it is the only meaningful

message with a given ciphertext and hence can be recovered uniquely, as we were able

to recover “BUY GUN” from the ciphertext “EXB JXW” in the example. See [Sti06,

section 2.6] for more information on this interesting topic.
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Brute force attack

Trying all keys

A brute force attack can be attempted against any cryptosystem.

It tries all possible keys k . It works against the Caesar cipher
because the key space is so small.

For each k , Eve computes mk = Dk(c) and tests if mk is
meaningful. If exactly one meaningful mk is found, she knows that
m = mk .

Given long enough messages, the Caesar cipher is easily broken by
brute force—one simply tries all 26 possible keys to see which leads
to a sensible plaintext.

What is long enough?
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Brute force attack

Automating brute force attacks

With modern computers, it is quite feasible for an attacker to try
millions (∼ 220) or billions (∼ 230) of keys.

The attacker also needs an automated test to determine when she
has a likely candidate for the real key.

How does one write a program to distinguish valid English
sentences from gibberish?

One could imagine applying all sorts of complicated natural
language processing techniques to this task. However, much
simpler techniques can be nearly as effective.
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Letter frequencies

Random English-like messages

Consider random messages whose letter frequencies are similar to
that of valid English sentences.

For each letter b, let pb be the probability (relative frequency) of
that letter in normal English text.

A message m = m1m2 . . .mr has probability pm1 · pm2 · · · pmr .

This is the probability of m being generated by the simple process
that chooses r letters one at a time according to the probability
distribution p.
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Letter frequencies

Determining likely keys

Assume Eve knows that c = Ek(m), where m was chosen randomly
as described above and k is uniformly distributed.

Eve easily computes the 26 possible plaintext messages
D0(c), ...,D25(c), one of which is correct.

To choose which, she computes the conditional probability of each
message given c , then picks the message with the greatest
probability.

This guess will not always be correct, but for letter distributions
that are not too close to uniform (including English text) and
sufficiently long messages, it works correctly with very high
probability.
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Key length

How long should the keys be?

The DES (Data Encryption Standard) cryptosystem (which we will
talk about next week) has 56-bit keys for a key space of size 256.

A special DES Key Search Machine was built as a collaborative
project by Cryptography Research, Advanced Wireless
Technologies, and EFF. (Click here for details.)

This machine was capable of searching 90 billion keys/second and
discovered the RSA DES Challenge key on July 15, 1998, after
searching for 56 hours. The entire project cost was under $250,000.

Now, 15+ years later, the same task could likely be done on a
commercial cluster computer such as Amazon’s Elastic Compute
Cloud (EC2) at modest cost.
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Key length

What is safe today and into the future?

DES with its 56-bit keys offers little security today.

80-bit keys were considered acceptable in the past decade, but in
2005, NIST proposed that they be used only until 2010.

Triple DES (with 112-bit keys) and AES (with 128-bit keys) will
probably always be safe from brute-force attacks (but not
necessarily from other kinds of attacks).

Quantum computers, if they become a reality, would cut the
effective key length in half (see Wikipedia “key size”), so some
people recommend 256-bit keys (which AES supports).
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Manual attacks

Cryptography before computers

Large-scale brute force attacks were not feasible before computers.

While Caesar is easily broken by hand, clever systems have been
devised that can be used by hand but are surprisingly secure.
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Manual attacks

Attacks on any monoalphabetic ciphers

The Caesar cipher uses only the 26 rotations out of the 26!
permutations on the alphabet. The monoalphabetic cipher uses
them all. A key k is an arbitrary permutation of the alphabet.
Ek(m) replaces each letter a of m by k(a) to yield c . To decrypt,
Dk(c) replaces each letter b of c by k−1(b).

The size of the key space is |K| = 26! > 274, large enough to be
moderately resistant to a brute force attack.

Nevertheless, monoalphabetic ciphers can be readily broken using
letter frequency analysis, given a long enough message.

This is because monoalphabetic ciphers preserve letter frequencies.
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Manual attacks

How to break monoalphabetic ciphers

Each occurrence of a in m is replaced by k(a) to get c .
Hence, if a is the most frequent letter in m, k(a) will be the most
frequent letter in c .

Eve now guesses that a is one of the most frequently-occurring
letters in English, i.e., ‘e’ or ‘t’.
She then repeats on successively less frequent ciphertext letters.

Of course, not all of these guesses will be correct, but in this way
the search space is vastly reduced.

Moreover, many wrong guesses can be quickly discarded even
without constructing the entire trial key because they lead to
unlikely letter combinations.
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Manual attacks

Why can’t one break the one-time pad?

For the one-time pad on n-bit messages and keys, there are 2n

possible keys.

For any fixed ciphertext c , every n-bit message is a possible
decryption of c .

This completely masks all letter frequency information from the
ciphertext.
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