
Outline Tools Needed for RSA Algorithms Number Theory

CPSC 467: Cryptography and Computer Security

Michael J. Fischer

Lecture 9
September 27, 2017

CPSC 467, Lecture 9 1/32

Outline Tools Needed for RSA Algorithms Number Theory

Tools Needed for RSA

Algorithms
Computing with Big Numbers
Fast Exponentiation Algorithms

Number Theory
Factoring Assumption
Number Theory for RSA
Division of Integers

CPSC 467, Lecture 9 2/32

Outline Tools Needed for RSA Algorithms Number Theory

Tools Needed for RSA

CPSC 467, Lecture 9 3/32

Outline Tools Needed for RSA Algorithms Number Theory

Two kinds of tools are needed to understand and implement RSA.

Algorithms: Need clever algorithms for primality testing, fast
exponentiation, and modular inverse computation.

Number theory: Need some theory of Zn, the integers modulo n,
and some special properties of numbers n that are
the product of two primes.

CPSC 467, Lecture 9 4/32

Outline Tools Needed for RSA Algorithms Number Theory

Algorithms

CPSC 467, Lecture 9 5/32

Outline Tools Needed for RSA Algorithms Number Theory

Bignums

Algorithms for arithmetic on big numbers

The arithmetic built into typical computers can handle only 32-bit
or 64-bit integers. Hence, all arithmetic on large integers must be
performed by software routines.

The straightforward algorithms for addition and multiplication have
time complexities O(N) and O(N2), respectively, where N is the
length (in bits) of the integers involved.

Asymptotically faster multiplication algorithms are known, but they
involve large constant factor overheads. It’s not clear whether they
are practical for numbers of the sizes we are talking about.

CPSC 467, Lecture 9 6/32

Outline Tools Needed for RSA Algorithms Number Theory

Bignums

Big number libraries

A lot of cleverness is possible in the careful implementation of even
the O(N2) multiplication algorithms, and a good implementation
can be many times faster in practice than a poor one. They are
also hard to get right because of many special cases that must be
handled correctly!

Most people choose to use big number libraries written by others
rather than write their own code.

Two such libraries that you can use in this course:

1. GMP (GNU Multiple Precision Arithmetic Library);

2. The big number routines in the openssl crypto library.

CPSC 467, Lecture 9 7/32

Outline Tools Needed for RSA Algorithms Number Theory

Bignums

GMP

GMP provides a large number of highly-optimized function calls for
use with C and C++.

It is preinstalled on all of the Zoo nodes and supported by the open
source community. Type info gmp at a shell for documentation.

CPSC 467, Lecture 9 8/32

Outline Tools Needed for RSA Algorithms Number Theory

Bignums

Openssl crypto package

OpenSSL is a cryptography toolkit implementing the Secure
Sockets Layer (SSL v2/v3) and Transport Layer Security (TLS v1)
network protocols and related cryptography standards required by
them.

It is widely used and pretty well debugged. The implementation
requires computation on big numbers. OpenSSL implements its
own big number routines which are contained in its crypto library.

Type man crypto for general information about the crypto library.
Details on the hundreds of individual functions are
summarized here. Big number man pages are located on the Zoo
in /usr/share/man/man3/ and begin with the “BN ” prefix.

CPSC 467, Lecture 9 9/32

https://www.openssl.org/docs/man1.1.0/crypto/crypto.html
https://www.openssl.org/docs/man1.1.0/crypto

Outline Tools Needed for RSA Algorithms Number Theory

Exp

Modular exponentiation

The basic operation of RSA is modular exponentiation of big
numbers, i.e., computing me mod n for big numbers m, e, and n.

The obvious way to compute this would be to compute first
t = me and then compute t mod n.

This has two serious drawbacks.

CPSC 467, Lecture 9 10/32

Outline Tools Needed for RSA Algorithms Number Theory

Exp

Computing me the conventional way is too slow

The simple iterative loop to compute me requires e multiplications,
or about 21024 operations in all. This computation would run
longer than the current age of the universe (which is estimated to
be 15 billion years).

Assuming one loop iteration could be done in one microsecond
(very optimistic seeing as each iteration requires computing a
product and remainder of big numbers), only about 30× 1012

iterations could be performed per year, and only about 450× 1021

iterations in the lifetime of the universe. But 450× 1021 ≈ 279, far
less than e − 1.

CPSC 467, Lecture 9 11/32

Outline Tools Needed for RSA Algorithms Number Theory

Exp

The result of computing me is too big to write down.

The number me is too big to store! This number, when written in
binary, is about 1024 ∗ 21024 bits long, a number far larger than the
number of atoms in the universe (which is estimated to be only
around 1080 ≈ 2266).

CPSC 467, Lecture 9 12/32

Outline Tools Needed for RSA Algorithms Number Theory

Exp

Controlling the size of intermediate results

The trick to get around the second problem is to do all arithmetic
modulo n, that is, reduce the result modulo n after each arithmetic
operation.

The product of two length ` numbers is only length 2` before
reduction mod n, so in this way, one never has to deal with
numbers longer than about 2048 bits.

Question to think about: Why is it correct to do this?

CPSC 467, Lecture 9 13/32

Outline Tools Needed for RSA Algorithms Number Theory

Exp

Efficient exponentiation

The trick to avoiding the first problem is to use a more efficient
exponentiation algorithm based on repeated squaring.

For the special case of e = 2k , one computes me mod n as follows:

m0 = m
m1 = (m0 ∗m0) mod n
m2 = (m1 ∗m1) mod n

...
mk = (mk−1 ∗mk−1) mod n.

Clearly, mi = m2i mod n for all i .

CPSC 467, Lecture 9 14/32

Outline Tools Needed for RSA Algorithms Number Theory

Exp

Combining the mi for general e

For values of e that are not powers of 2, me mod n can be
obtained as the product modulo n of certain mi ’s.

Express e in binary as e = (bsbs−1 . . . b2b1b0)2. Then e =
∑

i bi2
i ,

so
me = m

∑
i bi2

i
=

∏
i

mbi2
i

=
∏
i

(m2i)bi =
∏

i : bI=1

mi .

Since each bi ∈ {0, 1}, we include exactly those mi in the final
product for which bi = 1. Hence,

me mod n =
∏

i : bI=1

mi mod n.

CPSC 467, Lecture 9 15/32

Outline Tools Needed for RSA Algorithms Number Theory

Exp

Towards greater efficiency

It is not necessary to perform this computation in two phases.

Rather, the two phases can be combined together, resulting in
slicker and simpler algorithms that do not require the explicit
storage of the mi ’s.

We give both a recursive and an iterative version. They’re both
based on the identities1

me =

{
(m2)be/2c if e is even;

(m2)be/2c ×m if e is odd;

1be/2c is the greatest integer less than or equal to e/2.

CPSC 467, Lecture 9 16/32

Outline Tools Needed for RSA Algorithms Number Theory

Exp

A recursive exponentiation algorithm

Here is a recursive version written in C notation, but it should be
understood that the C programs only work for numbers smaller
than 216. To handle larger numbers requires the use of big number
functions.

/* computes m^e mod n recursively */

int modexp(int m, int e, int n) {

int r;

if (e == 0) return 1; /* m^0 = 1 */

r = modexp(m*m % n, e/2, n); /* r = (m^2)^(e/2) mod n */

if ((e&1) == 1) r = r*m % n; /* handle case of odd e */

return r;

}

CPSC 467, Lecture 9 17/32

Outline Tools Needed for RSA Algorithms Number Theory

Exp

An iterative exponentiation algorithm

This same idea can be expressed iteratively to achieve even greater
efficiency.

/* computes m^e mod n iteratively */

int modexp(int m, int e, int n) {

int r = 1;

while (e > 0) {

if ((e&1) == 1) r = r*m % n;

e /= 2;

m = m*m % n;

}

return r;

}

CPSC 467, Lecture 9 18/32

Outline Tools Needed for RSA Algorithms Number Theory

Exp

Correctness

The loop invariant is

e > 0 ∧ (me0
0 mod n = rme mod n) (1)

where m0 and e0 are the initial values of m and e, respectively.

Proof of correctness:

I It is easily checked that (1) holds at the start of each iteration.

I If the loop exits, then e = 0, so r mod n is the desired result.

I Termination is ensured since e gets reduced during each
iteration.

CPSC 467, Lecture 9 19/32

Outline Tools Needed for RSA Algorithms Number Theory

Exp

A minor optimization
Note that the last iteration of the loop computes a new value of m
that is never used. A slight efficiency improvement results from
restructuring the code to eliminate this unnecessary computation.
Following is one way of doing so.

/* computes m^e mod n iteratively */

int modexp(int m, int e, int n) {

int r = ((e&1) == 1) ? m % n : 1;

e /= 2;

while (e > 0) {

m = m*m % n;

if ((e&1) == 1) r = r*m % n;

e /= 2;

}

return r;

}

CPSC 467, Lecture 9 20/32

Outline Tools Needed for RSA Algorithms Number Theory

Number Theory

CPSC 467, Lecture 9 21/32

Outline Tools Needed for RSA Algorithms Number Theory

Factoring

Factoring assumption

The factoring problem is to find a prime divisor of a composite
number n.

The factoring assumption is that there is no probabilistic
polynomial-time algorithm for solving the factoring problem, even
for the special case of an integer n that is the product of just two
distinct primes

The security of RSA is based on the factoring assumption. No
feasible factoring algorithm is known, but there is no proof that
such an algorithm does not exist.

CPSC 467, Lecture 9 22/32

Outline Tools Needed for RSA Algorithms Number Theory

Factoring

How big is big enough?

The security of RSA depends on n, p, q being sufficiently large.

What is sufficiently large? That’s hard to say, but n is typically
chosen to be at least 1024 bits long, or for better security, 2048
bits long.

The primes p and q whose product is n are generally chosen be
roughly the same length, so each will be about half as long as n.

CPSC 467, Lecture 9 23/32

Outline Tools Needed for RSA Algorithms Number Theory

Number Theory for RSA

Number theory overview

In this and following sections, we review some number theory that
is needed for understanding RSA.

I will provide only a high-level overview. Further details are
contained in course handouts and the textbooks.

CPSC 467, Lecture 9 24/32

Outline Tools Needed for RSA Algorithms Number Theory

Number Theory for RSA

Bare-bones definitions

The following definitions apply to the RSA parameters.

I p, q are distinct large primes of roughly the same length.

I n = pq.

I Zn = {0, 1, . . . , n − 1}.
I φ(n) = (p − 1)(q − 1). [φ is Euler’s totient function.]

I Z∗n are the numbers in Zn that are relatively prime to n (that
is, not divisible by either p or q, which is most of them).

Fact: |Z∗n| = φ(n).

CPSC 467, Lecture 9 25/32

Outline Tools Needed for RSA Algorithms Number Theory

Number Theory for RSA

Example: Small RSA

I p = 11, q = 13.

I n = p × q = 143.

I Z143 = {0, 1, 2, . . . , 141, 142}.
I φ(143) = (p − 1)(q − 1) = 10× 12 = 120.

I Z∗143 = Z143 −M11 −M13, where
M11 = {0, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121, 132},
M13 = {0, 13, 26, 39, 52, 65, 78, 91, 104, 117, 130}.

I |Z∗143| = |Z143| − |M11| − |M13|+ |M11 ∩M13|
= 143− 13− 11 + 1
= 120 = φ(143).

CPSC 467, Lecture 9 26/32

Outline Tools Needed for RSA Algorithms Number Theory

Number Theory for RSA

Summary of what is needed

Here’s a summary of the number theory needed to understand RSA
and its associated algorithms.

I Greatest common divisor, Zn, modn, φ(n), Z∗n, and how to
add, subtract, multiply, and find inverses mod n.

I Euler’s theorem: aφ(n) ≡ 1 (mod n) for a ∈ Z∗n.

I How to generate large prime numbers: density of primes and
testing primality.

CPSC 467, Lecture 9 27/32

Outline Tools Needed for RSA Algorithms Number Theory

Number Theory for RSA

Generating the RSA modulus

To generate an RSA modulus n, we find primes p and q of the
desired lengths and compute n = pq.

To find a large prime, repeatedly choose numbers of the desired
length and test each for primality. We must show that the density
of primes is large enough for this procedure to be feasible.

CPSC 467, Lecture 9 28/32

Outline Tools Needed for RSA Algorithms Number Theory

Number Theory for RSA

Finding the RSA key pair

I The RSA key pair (e, d) is chosen to satisfy the modular
equation ed ≡ 1 (mod φ(n)).

I To find (e, d):

1. Choose random e ∈ Z∗
φ(n). Do this by repeatedly choosing e at

random from Zφ(n) and using gcd to test membership in Z∗
φ(n).

2. Solve the modular equation ed ≡ 1 (mod φ(n)) for d .

Using Euler’s theorem, we can show

med ≡ m (mod n)

for all m ∈ Z∗n. This implies Dd(Ee(m)) = m.

To show that decryption works even in the rare case that
m ∈ Zn − Z∗n requires some more number theory that we will omit.

CPSC 467, Lecture 9 29/32

Outline Tools Needed for RSA Algorithms Number Theory

Division of Integers

Quotient and remainder

Theorem (Euclidean division)

Let a, b be integers and assume b > 0. There are unique integers q
(the quotient) and r (the remainder) such that a = bq + r and
0 ≤ r < b.

Write the quotient as a÷ b and the remainder as a mod b. Then

a = b × (a÷ b) + (a mod b).

Equivalently,
a mod b = a− b × (a÷ b).

a÷ b = ba/bc.2

2Here, / is ordinary real division and bxc, the floor of x , is the greatest
integer ≤ x . In C, / is used for both ÷ and / depending on its operand types.

CPSC 467, Lecture 9 30/32

Outline Tools Needed for RSA Algorithms Number Theory

Division of Integers

The mod operator for negative numbers

When either a or b is negative, there is no consensus on the
definition of a mod b.

By our definition, a mod b is always in the range [0 . . . b − 1], even
when a is negative.

Example,

(−5) mod 3 = (−5)− 3× ((−5)÷ 3) = −5− 3× (−2) = 1.

CPSC 467, Lecture 9 31/32

Outline Tools Needed for RSA Algorithms Number Theory

Division of Integers

The mod operator % in C

In the C programming language, the mod operator % is defined
differently, so (a % b) 6= (a mod b) when a is negative and b is
positive.

The C standard defines a % b to be the number r satisfying the
equation (a/b) ∗ b + r = a, so r = a− (a/b) ∗ b.

C also defines a/b to be the result of rounding the real number
a/b towards zero, so −5/3 = −1. Hence,

−5 % 3 = −5− (−5/3) ∗ 3 = −5 + 3 = −2.

CPSC 467, Lecture 9 32/32

