
Outline Using Digital Signatures Signing Message Digests Practical Signatures

CPSC 467: Cryptography and Computer Security

Michael J. Fischer

Lecture 12
October 9, 2017

CPSC 467, Lecture 12 1/28



Outline Using Digital Signatures Signing Message Digests Practical Signatures

Using Digital Signatures
Adding redundancy

Signing Message Digests
Signed encrypted messages

Practical Signature Algorithms
ElGamal digital signature scheme
Digital signature algorithm (DSA)

CPSC 467, Lecture 12 2/28



Outline Using Digital Signatures Signing Message Digests Practical Signatures

Using Digital Signatures

CPSC 467, Lecture 12 3/28



Outline Using Digital Signatures Signing Message Digests Practical Signatures

Adding redundancy

Adding redundancy

Recall: RSA signatures are subject to existential forgery.

Redundancy can be used to prevent this.

Example: Prefix a fixed string σ to the front of each message
before signing.

This gives rise to a variant RSA signature scheme (Sσd ,V
σ
e ).

I Signing function: Sσd (m) = Dd(σm)

I Verification predicate: V σ
e (m, s)⇐⇒ σm = Ee(s).

CPSC 467, Lecture 12 4/28



Outline Using Digital Signatures Signing Message Digests Practical Signatures

Adding redundancy

Security of signatures with fixed redundancy

The security of this scheme depends on the mixing properties of
the encryption and decryption functions, that is, the extent to
which each output bit depends on most of the input bits.

Not all cryptosystems mix well.

For example, a block cipher used in ECB mode (see lecture 6
and lecture 8) encrypts a block at a time, so each block of output
bits depends only on the corresponding block of input bits.

CPSC 467, Lecture 12 5/28

http://zoo.cs.yale.edu/classes/cs467/2017f/lectures/ln06.pdf
http://zoo.cs.yale.edu/classes/cs467/2017f/lectures/ln08.pdf


Outline Using Digital Signatures Signing Message Digests Practical Signatures

Adding redundancy

Forging signatures with fixed redundancy

Suppose it happens that

Sσd (m) = Dd(σm) = Dd(σ) · Dd(m).

Then Mallory can forge random messages assuming he knows just
one valid signed message (m0, s0). Here’s how.

I He knows that s0 = Dd(σ) ·Dd(m), so from s0 he extracts the
prefix s00 = Dd(σ).

I He now chooses a random s ′01 and computes m′ = Ee(s ′01)
and s ′ = s00 · s ′01.

I The signed message (m′, s ′) is valid since
Ee(s ′) = Ee(s00 · s ′01) = Ee(s00) · Ee(s ′01) = σm′.

CPSC 467, Lecture 12 6/28



Outline Using Digital Signatures Signing Message Digests Practical Signatures

Signing Message Digests

CPSC 467, Lecture 12 7/28



Outline Using Digital Signatures Signing Message Digests Practical Signatures

Message digests

A better way to prevent forgery is to sign a message digest of the
message rather than sign m itself.

A message digest function h, also called a cryptographic one-way
hash function or a fingerprint function, maps long strings to short
random-looking strings.

I To sign a message m, Alice computes Sd(m) = Dd(h(m)).

I To verify the signature s, Bob checks that h(m) = Ee(s).

CPSC 467, Lecture 12 8/28



Outline Using Digital Signatures Signing Message Digests Practical Signatures

Forging signed message digests

For Mallory to generate a forged signed message (m′, s ′) he must
somehow come up with m′ and s ′ satisfying

h(m′) = Ee(s ′) (1)

That is, he must find m′ and s ′ that both map to the same string,
where m′ is mapped by h and s ′ by Ee .

Two natural approaches for attempting to satisfying (1):

1. Pick m′ at random and solve for s ′.

2. Pick s ′ at random and solve for m′.

CPSC 467, Lecture 12 9/28



Outline Using Digital Signatures Signing Message Digests Practical Signatures

Approach 1: Solve for s ′

Equation:
h(m′) = Ee(s ′) (1)

To solve for s ′ given m′ requires computing

E−1e (h(m′)) = Dd(h(m′)) = s ′.

Alice can compute Dd , which is what enables her to sign messages.

But Mallory presumably cannot compute Dd without knowing d ,
for if he could, he could also break the underlying cryptosystem.

CPSC 467, Lecture 12 10/28



Outline Using Digital Signatures Signing Message Digests Practical Signatures

Approach 2: Solve for m′

Equation:
h(m′) = Ee(s ′) (1)

To solve for m′ given s ′ requires “inverting” h.

Since h is many-one, a value y = Ee(s ′) can have many “inverses”
or preimages.

To successfully forge a signed message, Mallory needs to find only
one value m′ such that h(m′) = Ee(s ′).

However, the defining property of a cryptographic hash function is
that, given y , it should be hard to find any x ∈ h−1(y).

Hence, Mallory cannot feasibly find m′ satisfying 1.

CPSC 467, Lecture 12 11/28



Outline Using Digital Signatures Signing Message Digests Practical Signatures

Other attempts

Of course, these are not the only two approaches that Mallory
might take.

Perhaps there are ways of generating valid signed messages (m′, s ′)
where m′ and s ′ are generated together.

I do not know of such a method, but this doesn’t say one doesn’t
exist.

CPSC 467, Lecture 12 12/28



Outline Using Digital Signatures Signing Message Digests Practical Signatures

More advantages of signing message digests

Another advantage of signing message digests rather than signing
messages directly: the signatures are shorter.

An RSA signature of m is roughly the same length as m.

An RSA signature of h(m) is a fixed length, regardless of how long
m is.

For both reasons of security and efficiency, signed message digests
are what is used in practice.

We’ll talk more about message digests later on.

CPSC 467, Lecture 12 13/28



Outline Using Digital Signatures Signing Message Digests Practical Signatures

Signed encrypted messages

Signed encrypted messages
One often wants to encrypt messages for privacy and sign them for
integrity and authenticity.

Let Alice have cryptosystem (E ,D) and signature system (S ,V ).
Some possibilities for encrypting and signing a message m:

1. Alice separately encrypts and signs the message and sends the
pair E (m) ◦ S(m).

2. Alice signs the encrypted message and sends the pair
E (m) ◦ S(E (m)).

3. Alice encrypts the signed message and sends the result
E (m ◦ S(m)).

Here we assume a standard way of representing the ordered pair
(x , y) as a string, which we denote by x ◦ y .

CPSC 467, Lecture 12 14/28



Outline Using Digital Signatures Signing Message Digests Practical Signatures

Signed encrypted messages

Weakness of encrypt-and-sign

Method 1, sending the pair E (m) ◦ S(m), is quite problematic
since signature functions make no guarantee of privacy.

We can construct a signature scheme (S ′,V ′) in which the
plaintext message is part of the signature itself.

If (S ′,V ′) is used as the signature scheme in method 1, there is no
privacy, for the plaintext message can be read directly from the
signature.

CPSC 467, Lecture 12 15/28



Outline Using Digital Signatures Signing Message Digests Practical Signatures

Signed encrypted messages

A forgery-resistant signature scheme with no privacy

We construct a contrived but valid signature scheme in order to
prove that not all signature schemes hide the message.

Let (S ,V ) be an RSA signature scheme. Define

S ′(m) = m ◦ S(m) ;

V ′(m, s) = ∃t(s = m ◦ t ∧ V (m, t)) .

Facts

I (S ′,V ′) is at least as secure as (S ,V ).

I S ′ leaks m.

Why? Suppose a forger produces a valid signed message (m, s) in
(S ′,V ′), so s = m ◦ t for some t and V (m, t) holds..

Then (m, t) is a valid signed message in (S ,V ).

CPSC 467, Lecture 12 16/28



Outline Using Digital Signatures Signing Message Digests Practical Signatures

Signed encrypted messages

Encrypt first

Recall method 2 (encrypt first): (E(m), S(E(m))).

This allows Eve to verify that the signed message was sent by
Alice, even though Eve cannot read it.

Whether or not this property is desirable is application-dependent.

More importantly, if a signature scheme such as RSA is used that
allows forging valid signed random messages, then Mallory could
forge a ciphertext c with Alice’s valid signature s = (c ,S(c)).

Bob, believing c is valid, might proceed to decrypt c and act on
the resulting message m.

CPSC 467, Lecture 12 17/28



Outline Using Digital Signatures Signing Message Digests Practical Signatures

Signed encrypted messages

Sign first

Recall method 3 (sign first): E (m ◦ S(m)).

This forces Bob to decrypt a bogus message before discovering
that it wasn’t sent by Alice.

This method also fails if Mallory can forge a valid signed random
message (m, s), for Mallory can proceed to encrypt m ◦ s (using
Bob’s public encryption key) and the result looks like it was
produced by Alice.

CPSC 467, Lecture 12 18/28



Outline Using Digital Signatures Signing Message Digests Practical Signatures

Signed encrypted messages

Combining protocols

Subtleties emerge when cryptographic protocols are combined,
even in a simple case like this where it is only desired to combine
privacy with authenticity.

Think about the pros and cons of other possibilities, such as
sign-encrypt-sign, i.e., (E (m ◦ S(m)),S(E (m ◦ S(m)))).

Does it also fail with forged random signed messages?

CPSC 467, Lecture 12 19/28



Outline Using Digital Signatures Signing Message Digests Practical Signatures

Practical Signature Algorithms

CPSC 467, Lecture 12 20/28



Outline Using Digital Signatures Signing Message Digests Practical Signatures

ElGamal digital signature scheme

ElGamal signature scheme

The private signing key consists of a primitive root g of a prime p
and a random exponent x .

The public verification key consists of g , p, and a, where
a = g x mod p.

To sign m:
1. Choose random y ∈ Z∗φ(p) .

2. Compute b = g y mod p.
3. Compute c = (m − xb)y−1 mod φ(p).
4. Signature s = (b, c).

To verify (m, s), where s = (b, c):
1. Check that abbc ≡ gm (mod p).

CPSC 467, Lecture 12 21/28



Outline Using Digital Signatures Signing Message Digests Practical Signatures

ElGamal digital signature scheme

Why do ElGamal signatures work?

We have
a = g x mod p

b = g y mod p

c = (m − xb)y−1 mod φ(p).

Want that abbc ≡ gm (mod p). Substituting, we get

abbc ≡ (g x)b(g y )c ≡ g xb+yc ≡ gm (mod p)

since xb + yc ≡ m (mod φ(p)).1

1Note the use of the identity from lecture 10, slide 34:
u ≡ v (mod φ(p))⇔ gu ≡ g v (mod p).

CPSC 467, Lecture 12 22/28

http://zoo.cs.yale.edu/classes/cs467/2017f/lectures/ln10.pdf


Outline Using Digital Signatures Signing Message Digests Practical Signatures

Digital signature algorithm (DSA)

Digital signature standard

The commonly-used Digital Signature Algorithm (DSA) is a
variant of ElGamal signatures. Also called the Digital Signature
Standard (DSS), it is described in U.S. Federal Information
Processing Standard FIPS 186–4.

It uses two primes: p, which is 1024 bits long,2 and q, which is 160
bits long and satisfies q |(p − 1). Here’s how to find them: Choose
q first, then search for z such that zq + 1 is prime and of the right
length. Choose p = zq + 1 for such a z .

2The original standard specified that the length L of p should be a multiple
of 64 lying between 512 and 1024, and the length N of q should be 160.
Revision 2, Change Notice 1 increased L to 1024. Revision 3 allows four (L,N)
pairs: (1024, 160), (2048, 224), (2048, 256), (3072, 256).

CPSC 467, Lecture 12 23/28

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf


Outline Using Digital Signatures Signing Message Digests Practical Signatures

Digital signature algorithm (DSA)

DSA key generation

Given primes p and q of the right lengths such that q |(p − 1),
here’s how to generate a DSA key.

I Let g = h(p−1)/q mod p for any h ∈ Z∗p for which g > 1.

This ensures that g ∈ Z∗p is a non-trivial qth root of unity
modulo p.

I Let x ∈ Z∗q.

I Let a = g x mod p.

Private signing key: (p, q, g , x).

Public verification key: (p, q, g , a).

CPSC 467, Lecture 12 24/28



Outline Using Digital Signatures Signing Message Digests Practical Signatures

Digital signature algorithm (DSA)

DSA signing and verification
Here’s how signing and verification work:

To sign m:
1. Choose random y ∈ Z∗q.
2. Compute b = (g y mod p) mod q.
3. Compute c = (m + xb)y−1 mod q.
4. Output signature s = (b, c).

To verify (m, s), where s = (b, c):
1. Verify that b, c ∈ Z∗q; reject if not.
2. Compute u1 = mc−1 mod q.
3. Compute u2 = bc−1 mod q.
4. Compute v = (gu1au2 mod p) mod q.
5. Check v = b.

CPSC 467, Lecture 12 25/28



Outline Using Digital Signatures Signing Message Digests Practical Signatures

Digital signature algorithm (DSA)

Why DSA works

To see why this works, note that since gq ≡ 1 (mod p), then

r ≡ s (mod q) implies g r ≡ g s (mod p).

This follows from the fact that g is a qth root of unity modulo p,
so g r+uq ≡ g r (gq)u ≡ g r (mod p) for any u.
Hence,

gu1au2 ≡ gmc−1+xbc−1 ≡ g y (mod p). (2)

gu1au2 mod p = g y mod p (3)

v = (gu1au2 mod p) mod q = (g y mod p) mod q = b

as desired. (Notice the shift between equivalence modulo p in
equation 2 and equality of remainders modulo p in equation 3.)

CPSC 467, Lecture 12 26/28



Outline Using Digital Signatures Signing Message Digests Practical Signatures

Digital signature algorithm (DSA)

Double remaindering

DSA uses the technique of computing a number modulo p and
then modulo q.

Call this function fp,q(n) = (n mod p) mod q.

fp,q(n) is not the same as n mod r for any modulus r , nor is it the
same as fq,p(n) = (n mod q) mod p.

CPSC 467, Lecture 12 27/28



Outline Using Digital Signatures Signing Message Digests Practical Signatures

Digital signature algorithm (DSA)

Example mod 29 mod 7
To understand better what’s going on, let’s look at an example.
Take p = 29 and q = 7. Then 7|(29− 1), so this is a valid DSA
prime pair. The table below lists the first 29 values of y = f29,7(n):

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
y 0 1 2 3 4 5 6 0 1 2 3 4 5 6

n 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

y 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0

The sequence of function values repeats after this point with a
period of length 29. Note that it both begins and ends with 0, so
there is a double 0 every 29 values. That behavior cannot occur
modulo any number r . That behavior is also different from
f7,29(n), which is equal to n mod 7 and has period 7. (Why?)

CPSC 467, Lecture 12 28/28


	Using Digital Signatures
	Adding redundancy

	Signing Message Digests
	Signed encrypted messages

	Practical Signature Algorithms
	ElGamal digital signature scheme
	Digital signature algorithm (DSA)


