
Outline Primitive Roots Random Cryptographic Hash Functions

CPSC 467: Cryptography and Computer Security

Michael J. Fischer

Lecture 15
October 25, 2017

CPSC 467, Lecture 15 1/31

Outline Primitive Roots Random Cryptographic Hash Functions

Primitive Roots
Properties of primitive roots
Lucas test
Special form primes

Functions That Look Random

Cryptographic Hash Functions
Properties of random functions
Message digest functions

CPSC 467, Lecture 15 2/31

Outline Primitive Roots Random Cryptographic Hash Functions

Primitive Roots

CPSC 467, Lecture 15 3/31

Outline Primitive Roots Random Cryptographic Hash Functions

Properties of primitive roots

Using the ElGamal cryptosystem

To use the ElGamal cryptosystem, we must be able to generate
random pairs (p, g), where p is a large prime, and g is a primitive
root of p.

We now look at primitive roots and how to find them.

CPSC 467, Lecture 15 4/31

Outline Primitive Roots Random Cryptographic Hash Functions

Properties of primitive roots

Primitive root

We say g is a primitive root of n if g generates all of Z∗n, that is,
Z∗n = {g , g2, g3, . . . , gφ(n)}.

By definition, this holds if and only if ord(g) = φ(n).

Not every integer n has primitive roots.

By Gauss’s theorem, the numbers having primitive roots are
1, 2, 4, pk , 2pk , where p is an odd prime and k ≥ 1.

In particular, every prime has primitive roots.

CPSC 467, Lecture 15 5/31

Outline Primitive Roots Random Cryptographic Hash Functions

Properties of primitive roots

Number of primitive roots

Theorem
The number of primitive roots of a prime p is φ(φ(p)).

Gauss’s theorem shows that p has at least one primitive root. The
following lemma show that there are at least φ(φ(p)) primitive
roots. We omit the proof that there are no more than that number.

Lemma (powers of primitive roots)

If g is a primitive root of p and x ∈ Z∗φ(p), then g x is also a
primitive root of p.

CPSC 467, Lecture 15 6/31

Outline Primitive Roots Random Cryptographic Hash Functions

Properties of primitive roots

Proof of lemma

We need to argue that every element h in Z∗p can be expressed as
h = (g x)y for some y .

I Since g is a primitive root, we know that h ≡ g ` (mod p) for
some `.

I We wish to find y such that g xy ≡ g ` (mod p).

I By Euler’s theorem, this is possible if the congruence equation
xy ≡ ` (mod φ(p)) has a solution y .

I We know that a solution exists iff gcd(x , φ(p)) |`.
I But this is the case since x ∈ Z∗φ(p), so gcd(x , φ(p)) = 1.

CPSC 467, Lecture 15 7/31

Outline Primitive Roots Random Cryptographic Hash Functions

Properties of primitive roots

Primitive root example

Let p = 19, so φ(p) = 18 and φ(φ(p)) = φ(2) · φ(9) = 6.

Consider g = 2 and g = 5. The subgroups Sg of Zp generated by
each g is given by the table:

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2k 2 4 8 16 13 7 14 9 18 17 15 11 3 6 12 5 10 1

5k 5 6 11 17 9 7 16 4 1 5 6 11 17 9 7 16 4 1

We see that 2 is a primitive root since S2 = Z∗p but 5 is not.

Now let’s look at Z∗φ(p) = Z∗18 = {1, 5, 7, 11, 13, 17}.

The complete set of primitive roots of p (in Zp) is then

{2, 25, 27, 211, 213, 217} = {2, 13, 14, 15, 3, 10}.

CPSC 467, Lecture 15 8/31

Outline Primitive Roots Random Cryptographic Hash Functions

Lucas test

Lucas test

Theorem (Lucas test)

g is a primitive root of a prime p if and only if

g (p−1)/q 6≡ 1 (mod p)

for all q > 1 such that q |(p − 1).

CPSC 467, Lecture 15 9/31

Outline Primitive Roots Random Cryptographic Hash Functions

Lucas test

Proof of correctness for Lucas test

Suppose the Lucas test fails for some q > 1, q |(p − 1). That
means g (p−1)/q ≡ 1 (mod p). It follows that

ord(g) ≤ p − 1

q
< p − 1 = φ(p),

so g is not a primitive root of p. Why?

Conversely, if g is not a primitive root of p, then ord(g) < p − 1,
or equivalently, (p − 1)/ord(g) > 1. Hence, the test will fail for
q = (p − 1)/ord(g) since then

g (p−1)/q = gord(g) ≡ 1 (mod p).

CPSC 467, Lecture 15 10/31

Outline Primitive Roots Random Cryptographic Hash Functions

Lucas test

Problems with the Lucas test

A drawback to the Lucas test is that one must try all the divisors
of p − 1, and there can be many.

Moreover, to find the divisors efficiently implies the ability to
factor. Thus, it does not lead to an efficient algorithm for finding a
primitive root of an arbitrary prime p.

However, there are some special cases which we can handle.

CPSC 467, Lecture 15 11/31

Outline Primitive Roots Random Cryptographic Hash Functions

Special form primes

Special form primes

Let p and q be odd primes such that p = 2q + 1.

Then, p − 1 = 2q, so p − 1 is easily factored and the Lucas test
easily employed.

There are lots of examples of such pairs, e.g., q = 41 and p = 83.

CPSC 467, Lecture 15 12/31

Outline Primitive Roots Random Cryptographic Hash Functions

Special form primes

Number of primitive roots of special form primes

Recall p = 2q + 1. We just saw that the number of primitive roots
of p is

φ(φ(p)) = φ(p − 1) = φ(2)φ(q) = q − 1.

Hence, the density of primitive roots in Z∗p is

(q − 1)/(p − 1) = (q − 1)/2q ≈ 1/2.

This makes it easy to find primitive roots of p probabilistically —
choose a random element a ∈ Z∗p and apply the Lucas test to it.

CPSC 467, Lecture 15 13/31

Outline Primitive Roots Random Cryptographic Hash Functions

Special form primes

Density of special form primes

How many special form primes are there?
We defer the question of the density of primes q such that 2q + 1
is also prime but remark that we can relax the requirements a bit.

CPSC 467, Lecture 15 14/31

Outline Primitive Roots Random Cryptographic Hash Functions

Special form primes

Relaxed requirements on special form primes

Here’s another way of generating a prime pair (p, q).

Let q be a prime. Generate numbers u = 2, 4, 6, . . . until we find u
for which p = uq + 1 is prime.

[Why do we skip odd u?]

Then p − 1 = uq for small u.

u can be factored by exhaustive search. At that point, we can
apply the Lucas test as before to find primitive roots.

CPSC 467, Lecture 15 15/31

Outline Primitive Roots Random Cryptographic Hash Functions

Special form primes

How many u must be tried?

By the prime number theorem, approximately one out of every
ln(q) numbers around the size of q will be prime.

While that applies to randomly chosen numbers, not to the
numbers in this particular sequence, there is at least some hope
that the density of primes will be similar.

If so, we can expect that u/2 will be about ln(q), so u is easily
factored for cryptographic-sized primes q.

CPSC 467, Lecture 15 16/31

Outline Primitive Roots Random Cryptographic Hash Functions

Functions That Look Random

CPSC 467, Lecture 15 17/31

Outline Primitive Roots Random Cryptographic Hash Functions

Random variables revisited

Recall the definitions from lecture 5.

A discrete probability distribution over sample space Ω is a
function p : Ω→ [0 . . . 1] such that

∑
ω∈Ω p(ω) = 1.

A discrete random variable is a function X : Ω→ X , where X is a
countable set.

Informally, X is like a variable that assumes different values in X
at different times. Alternatively, a random variable is the process
of sampling from X , where Pr[X = x] =

∑
ω:X(ω)=x p(ω). Here, p

is an associated probability distribution.

An experiment consists of making a random selection ω from space
Ω, thereby determining the “value” of X .

CPSC 467, Lecture 15 18/31

http://zoo.cs.yale.edu/classes/cs467/2017f/lectures/ln05.pdf

Outline Primitive Roots Random Cryptographic Hash Functions

Random Functions

A random function extends the notion of a random variable by
allowing additional parameters x1, . . . , xk . We’ll assume a single
parameter x ∈ X in the following discussion.

Formally, a random function F takes two arguments, x and ω, and
produces a value in its range Y . We write F (x , ω) ∈ Y .

As with a random variable, ω is chosen by sampling Ω according to
an underlying probability distribution p. Thus, an experiment
consists of randomly selecting ω from Ω, which then determines
the value y = F (x , ω).

CPSC 467, Lecture 15 19/31

Outline Primitive Roots Random Cryptographic Hash Functions

Random functions (continued)

Depending on when the experiment is performed, we can view a
random function in two different ways.

1. If we fix x but defer the experiment, then we may write
F (x) = Yx , where Yx is the random variable Yx(ω) = F (x , ω).

2. If we perform the experiment first by randomly choosing ω,
then we are in effect choosing a function fω from the set of
functions

F = {fω | fω(x) = F (x , ω)}.

Here, fω is an ordinary function mapping X to Y.

CPSC 467, Lecture 15 20/31

Outline Primitive Roots Random Cryptographic Hash Functions

Uniform random functions

A uniformly distributed random function F from X to Y is a
random function F where every function f in X → Y is
equiprobable.

Equivalently, for each x , F (x) is a uniformly distributed random
variable over Y, and the random variables {F (x) | x ∈ X} are
mutually independent.

In particular, for any x and randomly chosen ω, each y ∈ Y is
equilikely to be the value of F (x , ω), independent of the values of
F for other x ′ 6= x .

CPSC 467, Lecture 15 21/31

Outline Primitive Roots Random Cryptographic Hash Functions

Example

Suppose random variable F (k) is a biased coin with probability of
“heads” equal to 1/k . Then F (3) is the distribution on coin flips
that results in “heads” with probability 1/3 and “tails” with
probability 2/3. Successive evaluations of f (3) result in a sequence
of coin outcomes where, on average, 1/3 of the outcomes are
“heads” and 2/3 are “tails”. F (4) is similar, except fewer “heads”
and more “tails” are expected.

Contrast this with a particular random instantiation f of F . Now,
f (3) might be either “heads” or “tails”, but whatever f (3) is, it is
always the same every time f (3) is evaluated. Considering all
possible instantations of f , 1/3 of them will have f (3) = “heads”
and 2/3 of them will have f (3) = “tails”.

CPSC 467, Lecture 15 22/31

Outline Primitive Roots Random Cryptographic Hash Functions

Cryptographic Hash Functions

CPSC 467, Lecture 15 23/31

Outline Primitive Roots Random Cryptographic Hash Functions

Properties of random functions

Cryptographic use of random functions

Let M be a message space and H a hash value space, and assume
|M| � |H|. A random function h chosen uniformly from M→H
gives a way to protect the integrity of messages.

Suppose Bob knows h(m) for Alice’s message m, and Bob receives
m′ from Alice. If h(m′) = h(m), then with very high probability,
m′ = m, and Bob can be assured of the integrity of m′.

One problem with this approach is that we have no succinct way of
describing random functions, so there is no way for Bob to compute
h(m′). The other problem is that h should be chosen anew for
each message. Otherwise, there is a small chance being stuck with
a bad h (for example a constant function) forever and ever.

CPSC 467, Lecture 15 24/31

Outline Primitive Roots Random Cryptographic Hash Functions

Message digest functions

Message digest functions

A message digest (also called a cryptographic hash or fingerprint)
function is a fixed (non-random) function that is designed to “look
like” a random function.

The goal is to preserve the integrity-checking property of random
functions: If Bob knows h(m) and he receives m′, then if
h(m′) = h(m), he can reasonably assume that m′ = m.

We now try to formalize what we require of a message digest
function in order to have this property.

We also show that message digest functions do not necessarily
“look random”, so one should not assume such functions share
other properties with random functions.

CPSC 467, Lecture 15 25/31

Outline Primitive Roots Random Cryptographic Hash Functions

Message digest functions

Formal definition of message digest functions

Let M be a message space and H a hash value space, and assume
|M| � |H|.

A message digest (or cryptographic one-way hash or fingerprint)
function h maps M→H.

A collision is a pair of messages m1,m2 such that h(m1) = h(m2),
and we say that m1 and m2 collide.

Because |M| � |H|, h is very far from being one-to-one, and there
are many colliding pairs. Nevertheless, it should be hard for an
adversary to find collisions.

CPSC 467, Lecture 15 26/31

Outline Primitive Roots Random Cryptographic Hash Functions

Message digest functions

Collision-avoidance properties

We consider three increasingly strong versions of what it means to
be hard to find collisions:

I One-way: Given y ∈ H, it is hard to find m ∈M such that
h(m) = y .

I Weakly collision-free: Given m ∈M, it is hard to find
m′ ∈M such that m′ 6= m and h(m′) = h(m).

I Strongly collision-free: It is hard to find colliding pairs (m,m′).

These definitions are rather vague, for they ignore issues of what
we mean by “hard” and “find”.

CPSC 467, Lecture 15 27/31

Outline Primitive Roots Random Cryptographic Hash Functions

Message digest functions

What does “hard” mean?

Intuitively, “hard” means that Mallory cannot carry out the
computation in a feasible amount of time on a realistic computer.

CPSC 467, Lecture 15 28/31

Outline Primitive Roots Random Cryptographic Hash Functions

Message digest functions

What does “find” mean?

The term “find” may mean

I “always produces a correct answer”, or

I “produces a correct answer with high probability”, or

I “produces a correct answer on a significant number of
possible inputs with non-negligible probability”.

The latter notion of “find” says that Mallory every now and then
can break the system. For any given application, there is a
maximum acceptable rate of error, and we must be sure that our
cryptographic system meets that requirement.

CPSC 467, Lecture 15 29/31

Outline Primitive Roots Random Cryptographic Hash Functions

Message digest functions

One-way function

What does it mean for h to be one-way?

It means that no probabilistic polynomial time algorithm Ah(y)
produces a message m such that h(m) = y with non-negligible
success probability.

(Such an m is called a pre-image of y under h.)

This is only required for random y chosen according to a particular
hash value distribution. There might be particular values of y on
which Ah does succeed with high probability.

CPSC 467, Lecture 15 30/31

Outline Primitive Roots Random Cryptographic Hash Functions

Message digest functions

Hash value distribution

The hash value distribution we have in mind is the one induced by
h applied to the assumed distribution on the message spaceM.

Thus, the probability of y is the probability that a message m
chosen according to the assumed message distribution satisfies
h(m) = y .

This means that h can be considered one-way even though
algorithms might exist that succeed on low-probability subsets
of H.

CPSC 467, Lecture 15 31/31

	Primitive Roots
	Properties of primitive roots
	Lucas test
	Special form primes

	Functions That Look Random
	Cryptographic Hash Functions
	Properties of random functions
	Message digest functions

