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Properties of Hash Functions
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Collision-resistance

Recall the three collision-resistance properties for a hash function
H from lecture 15:

I One-way: Given y ∈ H, it is hard to find m ∈M such that
h(m) = y . 1

I Weakly collision-free: Given m ∈M, it is hard to find
m′ ∈M such that m′ 6= m and h(m′) = h(m).

I Strongly collision-free: It is hard to find colliding pairs (m,m′).

1More precisely, no probabilistic polynomial-time algorithm A(y) succeeds
with non-negligible probability at finding a pre-image m ∈ h−1(y), where y is
chosen at random from H with probability proportional to |h−1(y)|.
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Non-random

Hash values can look non-random

Intuitively, we like to think of h(m) as being “random-looking”,
with no obvious pattern.

Indeed, it would seem that obvious patterns and structure in h
would provide a means of finding collisions, violating the property
of being strong collision-free.

However, hash functions don’t necessarily look random or share
other properties of random functions, as I now show.
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Non-random

Example of a non-random-looking hash function

Suppose h is a strong collision-free hash function.

Define H(m) = 0 · h(m).

If (m,m′) is a colliding pair for H, then (m,m′) is also a colliding
pair for h.

Hence, if we could find colliding pairs for H, we could find colliding
pairs for h, contradicting the assumption that h is strong
collision-free.

We conclude that H is strong collision-free, despite the fact that
H(m) always begins with 0.
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Non-random

A one-way function that is sometimes easy to invert

Let h(m) be a cryptographic hash function that produces hash
values of length n. Define a new hash function H(m) as follows:

H(m) =

{
0 ·m if |m| = n
1 · h(m) otherwise.

Thus, H produces hash values of length n + 1.

I H(m) is clearly collision-free since the only possible collisions
are for m’s of lengths different from n.

I Any colliding pair (m,m′) for H is also a colliding pair for h.

I Since h is collision-free, then so is H.
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Non-random

H is one-way

H is one-way, assuming uniformly distributed messages.

This is true, even though H can be inverted for 1/2 of all possible
hash values y , namely, those that begin with 0.

The reason this doesn’t violate the definition of one-wayness is
that only 2n values of m map to hash values that begin with 0,
and all the rest map to values that begin with 1.

Since we are assuming |M| � |H|, the probability is small that a
uniformly sampled m ∈M has length exactly n.

We see that H is a cryptographic hash function, even though H
does not look random.
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Relations among hash function properties

Strong implies weak collision-free

There are some obvious relationships between properties of hash
functions that can be made precise once the underlying definitions
are made similarly precise.

Fact
If h is strong collision-free, then h is weak collision-free, assuming
uniformly distributed messages.
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Relations among hash function properties

Proof that strong ⇒ weak collision-free

Proof (Sketch).

Suppose h is not weak collision-free. We show that it is not strong
collision-free by showing how to enumerate colliding message pairs.

The method is straightforward:

I Pick a random message m ∈M.

I Try to find a colliding message m′.

I If we succeed, then output the colliding pair (m,m′).

I If not, try again with another randomly-chosen message.

Since h is not weak collision-free, we will succeed in finding m′ for
a significant number of m. Each success yields a colliding pair
(m,m′).
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Relations among hash function properties

Speed of finding colliding pairs
How fast the pairs are enumerated depends on how often the
algorithm succeeds and how fast it is.

These parameters in turn may depend on how large M is relative
to H.

It is always possible that h is one-to-one on some subset U of
elements in M, so it is not necessarily true that every message has
a colliding partner.

However, an easy counting argument shows that U has size at
most |H| − 1.

Since we assume |M| � |H|, the probability that a
randomly-chosen message from M lies in U is correspondingly
small.
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Relations among hash function properties

Strong implies one-way

In a similar vein, we argue that strong collision-free implies
one-way.

Fact
If h is strong collision-free, then h is one-way.
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Relations among hash function properties

Proof that strong ⇒ one-way

Proof (Sketch).

Suppose h is not one-way. Then there is an algorithm A(y) for
finding m such that h(m) = y , and A(y) succeeds with
non-negligible probability when y is chosen randomly with
probability proportional to the size of its preimage. Assume that
A(y) returns ⊥ to indicate failure.

A randomized algorithm to enumerate colliding pairs:

1. Choose random m.
2. Compute y = h(m).
3. Compute m′ = A(y).
4. If m′ 6∈ {⊥,m} then output (m,m′).
5. Start over at step 1.
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Relations among hash function properties

Proof (cont.)

Proof (continued).

Each iteration of this algorithm succeeds with significant
probability ε that is the product of the probability that A(y)
succeeds on y and the probability that m′ 6= m.

The latter probability is at least 1/2 except for those values m
which lie in the set of U of messages on which h is one-to-one
(defined in the previous proof).

Thus, assuming |M| � |H|, the algorithm outputs each colliding
pair in expected number of iterations that is only slightly larger
than 1/ε.
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Relations among hash function properties

Weak implies one-way

These same ideas can be used to show that weak collision-free
implies one-way, but now one has to be more careful with the
precise definitions.

Fact
If h is weak collision-free, then h is one-way.
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Relations among hash function properties

Proof that weak ⇒ one-way

Proof (Sketch).

Suppose as before that h is not one-way, so there is an algorithm
A(y) for finding m such that h(m) = y , and A(y) succeeds with
significant probability when y is chosen randomly with probability
proportional to the size of its preimage.

Assume that A(y) returns ⊥ to indicate failure. We want to show
this implies that the weak collision-free property does not hold, that
is, there is an algorithm that, for a significant number of m ∈M,
succeeds with non-negligible probability in finding a colliding m′.
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Relations among hash function properties

Proof that weak ⇒ one-way (cont.)

We claim the following algorithm works:

Given input m:
1. Compute y = h(m).
2. Compute m′ = A(y).
3. If m′ 6∈ {⊥,m} then output (m,m′) and halt.
4. Otherwise, start over at step 1.

This algorithm fails to halt for m ∈ U, but the number of such m
is small (= insignificant) when |M| � |H|.
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Relations among hash function properties

Proof that weak ⇒ one-way (cont.)

It may also fail even when a colliding partner m′ exists if it
happens that the value returned by A(y) is m. (Remember, A(y)
is only required to return some preimage of y ; we can’t say which.)

However, corresponding to each such bad case is another one in
which the input to the algorithm is m′ instead of m. In this latter
case, the algorithm succeeds, since y is the same in both cases.
With this idea, we can show that the algorithm succeeds in finding
a colliding partner on at least half of the messages in M− U.
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Constructing New Hash Functions from Old
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Extension

Extending a hash function

Suppose we are given a strong collision-free hash function

h : 256-bits→ 128-bits.

How can we use h to build a strong collision-free hash function

H : 512-bits→ 128-bits?

We consider several methods.

In the following, M is 512 bits long.
We write M = m1m2, where m1 and m2 are 256 bits each.
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Extension

Method 1

First idea. Define

H(M) = H(m1m2) = h(m1)⊕ h(m2).

Unfortunately, this fails to be either strong or weak collision-free.

Let M ′ = m2m1. (M,M ′) is always a colliding pair for H except in
the special case that m1 = m2.

Recall that (M,M ′) is a colliding pair iff H(M) = H(M ′) and
M 6= M ′.
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Extension

Method 2

Second idea. Define

H(M) = H(m1m2) = h(h(m1)h(m2)).

m1 and m2 are suitable arguments for h() since |m1| = |m2| = 256.

Also, h(m1)h(m2) is a suitable argument for h() since
|h(m1)| = |h(m2)| = 128.

Theorem
If h is strong collision-free, then so is H.
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Extension

Correctness proof for Method 2

Assume H has a colliding pair (M = m1m2, M
′ = m′1m

′
2).

Then H(M) = H(M ′) but M 6= M ′.

Case 1: h(m1) 6= h(m′1) or h(m2) 6= h(m′2).
Let u = h(m1)h(m2) and u′ = h(m′1)h(m′2).
Then h(u) = H(M) = H(M ′) = h(u′), but u 6= u′.
Hence, (u, u′) is a colliding pair for h.

Case 2: h(m1) = h(m′1) and h(m2) = h(m′2).
Since M 6= M ′, then m1 6= m′1 or m2 6= m′2 (or both).
Whichever pair is unequal is a colliding pair for h.

In each case, we have found a colliding pair for h.

Hence, H not strong collision-free ⇒ h not strong collision-free.
Equivalently, h strong collision-free ⇒ H strong collision-free.
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Chaining

A general chaining method

Let h : r -bits→ t-bits be a hash function, where r ≥ t + 2.
(In the above example, r = 256 and t = 128.)
Define H(m) for m of arbitrary length.

I Divide m after appropriate padding into blocks m1m2 . . .mk ,
each of length r − t − 1.

I Compute a sequence of t-bit states:

s1 = h(0t0m1)
s2 = h(s11m2)

...
sk = h(sk−11mk).

Then H(m) = sk .
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Chaining

Chaining construction gives strong collision-free hash

Theorem
Let h be a strong collision-free hash function. Then the hash
function H constructed from h by chaining is also strong
collision-free.
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Chaining

Correctness proof

Assume H has a colliding pair (m,m′).
We find a colliding pair for h.

I Let m = m1m2 . . .mk give state sequence s1, . . . , sk .

I Let m′ = m′1m
′
2 . . .m

′
k ′ give state sequence s ′1, . . . , s

′
k ′ .

Assume without loss of generality that k ≤ k ′.

Because m and m′ collide under H, we have sk = s ′k ′ .
Let r be the largest value for which sk−r = s ′k ′−r .

Let i = k − r , the index of the first such equal pair si = s ′k ′−k+i .

We proceed by cases.
(continued. . . )
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Chaining

Correctness proof (case 1)

Case 1: i = 1 and k = k ′.

Then sj = s ′j for all j = 1, . . . , k .

Because m 6= m′, there must be some ` such that m` 6= m′`.

If ` = 1, then (0t0m1, 0
t0m′1) is a colliding pair for h.

If ` > 1, then (s`−11m`, s
′
`−11m′`) is a colliding pair for h.

(continued. . . )
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Chaining

Correctness proof (case 2)

Case 2: i = 1 and k < k ′.

Let u = k ′ − k + 1.

Then s1 = s ′u.

Since u > 1 we have that

h(0t0m1) = s1 = s ′u = h(s ′u−11m′u),

so (0t0m1, s
′
u−11m′u) is a colliding pair for h.

Note that this is true even if 0t = s ′u−1 and m1 = m′u, a possibility
that we have not ruled out.

(continued. . . )
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Chaining

Correctness proof (case 3)

Case 3: i > 1.

Then u = k ′ − k + i > 1.

By choice of i , we have si = s ′u, but si−1 6= s ′u−1.

Hence,
h(si−11mi ) = si = s ′u = h(s ′u−11m′u),

so (si−11mi , s
′
u−11m′u) is a colliding pair for h.

(continued. . . )
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Chaining

Correctness proof (conclusion)

In each case, we found a colliding pair for h.

The contradicts the assumption that h is strong collision-free.

Hence, H is also strong collision-free.
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Common Hash Functions
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Popular hash functions

Many cryptographic hash functions are currently in use.

For example, the openssl library includes implementations of MD2,
MD4, MD5, MDC2, RIPEMD, SHA, SHA-1, SHA-256, SHA-384,
and SHA-512.

The SHA-xxx methods (otherwise known as SHA-2) are
recommended for new applications, but these other functions are
also in widespread use.
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SHA-2

SHA-2

SHA-2 is a family of hash algorithms designed by NSA known as
SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224,
SHA-512/256.

They produce message digests of lengths 224, 256, 384, or 512
bits.

They comprise the current Secure Hash Standard (SHS) and are
described in FIPS 180–4. It states,

“Secure hash algorithms are typically used with other
cryptographic algorithms, such as digital signature
algorithms and keyed-hash message authentication codes,
or in the generation of random numbers (bits).”
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SHA-2

SHA-1 broken

SHA-1 was first described in 1995. It produces a 160-bit message
digest.

It was broken in 2005 by Xiaoyun Wang, Yiqun Lisa Yin, and
Hongbo Yu: “Finding Collisions in the Full SHA-1”. CRYPTO
2005: 17-36.

Wang and Yu did their work at Shandong University; Yin is listed
on the paper as an independent security consultant in Greenwich,
CT.
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SHA-2

SHA-1 still in use

SHA-1 is still in widespread use despite its known vulnerabilities.

Google is taking steps in its Chrome browser to alert users to web
sites still using SHA-1 based certificates.

See “Gradually sunsetting SHA-1”.
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SHA-3

A new secure hash algorithm

On Nov. 2, 2007, NIST announced a public competition for a
replacement algorithm to be known as SHA-3.

The winner, an algorithm named Keccak, was announced on
October 2, 2012 and standardized in August 2015. See
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf.
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SHA-3

From the SHA-3 standard

Now that the standards document is out, it seems that SHA-3 is
considered to be a supplement to the previous standard, not a
replacement for it. The quote below is from the abstract of FIPS
PUB 202.

“Hash functions are components for many important
information security applications, including 1) the
generation and verification of digital signatures, 2) key
derivation, and 3) pseudorandom bit generation. The
hash functions specified in this Standard supplement the
SHA-1 hash function and the SHA-2 family of hash
functions that are specified in FIPS 180-4, the Secure
Hash Standard.”
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MD5

MD5

MD5 is an older algorithm (1992) devised by Rivest.

Weaknesses were found as early as 1996. It was shown not to be
collision resistant in 2004.2

Subsequent papers show that MD5 has more serious weaknesses
that make it no longer suitable for most cryptographic uses.

We present an overview of MD5 here because it is relatively simple
and it illustrates the principles used in many hash algorithms.

2How to Break MD5 and Other Hash Functions by Xiaoyun Wang and
Hongbo Yu.
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MD5

MD5 algorithm overview

MD5 generates a 128-bit message digest from an input message of
any length. It is built from a basic block function

g : 128-bit× 512-bit→ 128-bit.

The MD5 hash function h is obtained as follows:

I The original message is padded to length a multiple of 512.

I The result m is split into a sequence of 512-bit blocks
m1,m2, . . . ,mk .

I h is computed by chaining g on the first argument.

We next look at these steps in greater detail.

CPSC 467, Lecture 16 39/52



Outline Properties Hash Constructions Common Hash Functions Appendix

MD5

MD5 padding

As with block encryption, it is important that the padding function
be one-to-one, but for a different reason.

For encryption, the one-to-one property is what allows unique
decryption.

For a hash function, it prevents there from being trivial colliding
pairs.

For example, if the last partial block is simply padded with 0’s,
then all prefixes of the last message block will become the same
after padding and will therefore collide with each other.
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MD5

MD5 chaining

The function h can be regarded as a state machine, where the
states are 128-bit strings and the inputs to the machine are 512-bit
blocks.

The machine starts in state s0, specified by an initialization vector
IV.

Each input block mi takes the machine from state si−1 to new
state si = g(si−1,mi ).

The last state sk is the output of h, that is,

h(m1m2 . . .mk−1mk) = g(g(. . . g(g(IV ,m1),m2) . . . ,mk−1),mk).
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MD5

MD5 block function

The block function g(s, b) is built from a scrambling function
g ′(s, b) that regards s and b as sequences of 32-bit words and
returns four 32-bit words as its result.

Suppose s = s1s2s3s4 and g ′(s, b) = s ′1s
′
2s
′
3s
′
4.

We define

g(s, b) = (s1 + s ′1) · (s2 + s ′2) · (s3 + s ′3) · (s4 + s ′4),

where “+” means addition modulo 232 and “·” is concatenation of
the representations of integers as 32-bit binary strings.
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MD5

MD5 scrambling function

The computation of the scrambling function g ′(s, b) consists of 4
stages, each consisting of 16 substages.

We divide the 512-bit block b into 32-bit words b1b2 . . . b16.

Each of the 16 substages of stage i uses one of the 32-bit words of
b, but the order they are used is defined by a permutation πi that
depends on i .

In particular, substage j of stage i uses word b`, where ` = πi (j) to
update the state vector s.

The new state is fi ,j(s, b`), where fi ,j is a bit-scrambling function
that depends on i and j .
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MD5

Further remarks on MD5

We omit further details of the bit-scrambling functions fi ,j ,

However, note that the state s can be represented by four 32-bit
words, so the arguments to fi ,j occupy only 5 machine words.
These easily fit into the high-speed registers of modern processors.

The definitive specification for MD5 is RFC1321 and errata. A
general discussion of MD5 along with links to recent work and
security issues can be found on Wikipedia.
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Appendix: Birthday Attack Revisited

CPSC 467, Lecture 16 45/52



Outline Properties Hash Constructions Common Hash Functions Appendix

Bits of security for hash functions
MD5 hash function produces 128-bit values, whereas the SHA-xxx
family produces values of 160-bits or more.

How many bits do we need for security?

Both 128 and 160 are more than large enough to thwart a brute
force attack that simply searches randomly for colliding pairs.

However, the Birthday Attack reduces the size of the search space
to roughly the square root of the original size.

MD5’s effective security is at most 64 bits. (
√

2128 = 264.)

SHA-1’s effective security is at most 80-bits. (
√

2160 = 280.)

Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu describe an attack
that reduces this number to only 69-bits (Crypto 2005).
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Birthday Paradox

We described a birthday attack in lecture 7, based on the birthday
paradox.

The problem is to find the probability that two people in a set of
randomly chosen people have the same birthday.

This probability is greater than 50% in any set of at least 23
randomly chosen people.3.

23 is far less than the 253 people that are needed for the
probability to exceed 50% that at least one of them was born on a
specific day, say January 1.

3See Wikipedia, “Birthday paradox”.
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Birthday Paradox (cont.)

Here’s why it works.

The probability of not having two people with the same birthday is
is

q =
365

365
· 364

365
· · · 343

365
= 0.492703

Hence, the probability that (at least) two people have the same
birthday is 1− q = 0.507297.

This probability grows quite rapidly with the number of people in
the room. For example, with 46 people, the probability that two
share a birthday is 0.948253.
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Birthday attack on hash functions

The birthday paradox gives a much faster way to find colliding
pairs of a hash function than simply choosing pairs at random.

Method: Choose a random set of k messages and see if any
two messages in the set collide.

Thus, with only k evaluations of the hash function, we can test(k
2

)
= k(k − 1)/2 different pairs of messages for collisions.
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Birthday attack analysis

Of course, these
(k
2

)
pairs are not uniformly distributed, so one

needs a birthday-paradox style analysis of the probability that a
colliding pair will be found.

The general result is that the probability of success is at least 1/2
when k ≈

√
n, where n is the size of the hash value space.
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Practical difficulties of birthday attack

Two problems make this attack difficult to use in practice.

1. One must find duplicates in the list of hash values.
This can be done in time O(k log k) by sorting.

2. The list of hash values must be stored and processed.

For MD5, k ≈ 264. To store k 128-bit hash values requires 268

bytes ≈ 250 exabytes = 250,000 petabytes of storage.

To sort would require log2(k) = 64 passes over the table, which
would process 16 million petabytes of data.
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A back-of-the-envelope calculation

Google was reportedly processing 20 petabytes of data per day in
2008. At this rate, it would take Google more than 800,000 days
or nearly 2200 years just to sort the data.

This attack is still infeasible for values of k needed to break hash
functions. Nevertheless, it is one of the more subtle ways that
cryptographic primitives can be compromised.
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