
Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

CPSC 467: Cryptography and Computer Security

Michael J. Fischer

Lecture 17
November 1, 2017

CPSC 467, Lecture 17 1/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

Hashed Data Structures
Motivation: Peer-to-peer file sharing networks
Hash lists
Hash Trees

Lamport One-Time Signatures

Merkle Signatures

Authentication Using Passwords
Authentication problem
Passwords authentication schemes
Secure password storage
Dictionary attacks

CPSC 467, Lecture 17 2/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

Hashed Data Structures

CPSC 467, Lecture 17 3/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

P2P

Peer-to-peer networks

One real-world application of hash functions is to peer-to-peer
file-sharing networks.

The goal of a P2P network is to improve throughput when sending
large files to large numbers of clients.

It operates by splitting the file into blocks and sending each block
separately through the network along possibly different paths to
the client.

Rather than fetching each block from the master source, a block
can be received from any node (peer) that happens to have the
needed block.

The problem is to validate blocks received from untrusted peers.

CPSC 467, Lecture 17 4/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

P2P

Integrity checking

An obvious approach is for a trusted master node to send each
client a hash of the entire file.

When all blocks have been received, the client reassembles the file,
computes its hash, and checks that it matches the hash received
from the master.

The problem with this approach is that if the hashes don’t match,
the client has no idea which block is bad.

What is needed is a way to send a “proof” with each block that
the client can use to verify the integrity of the block when it is
received.

CPSC 467, Lecture 17 5/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

P2P

Block hashes

One idea is to compute a hash hk of each data block bk using a
cryptographic hash function H.

The client validates bk by checking that H(bk) = hk .

This allows a large untrusted data block to be validated against a
much shorter trusted block hashes.

Problem: How does the client obtain and validate the hashes?

We desire a scheme in which a small amount of trusted data can
be leveraged to validate the block hashes as well as the data blocks
themselves.

CPSC 467, Lecture 17 6/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

Hash lists

Hash lists

A hash list is a two-level tree of
hash values.

The leaves of the tree are the
block hashes Hashk .

The concatenation of the Hashk

are hashed together to produce a
top hash.

From Wikipedia, “Hash List”

CPSC 467, Lecture 17 7/42

http://en.wikipedia.org/wiki/Hash_list


Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

Hash lists

Using a hash list

The client receives top hash from the trusted source.

The client receives the list of Hashk from any untrusted source.

The Hashk are validated by hashing their concatenation and
comparing the result with the stored top hash.

Each data block bk is validated using the corresponding Hashk .

CPSC 467, Lecture 17 8/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

Hash lists

Weakness of hash list approach

The main drawback of hash lists is that the entire hash list must
be downloaded and verified before data blocks can be checked.

A bad Hashk would cause a good bk to be repeatedly rejected and
refetched.

BitTorrent places all of the hashes in a single file which is initially
downloaded from a trusted source.

CPSC 467, Lecture 17 9/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

Hash Trees

Hash trees (Merkle trees)

Hash trees provide a way to at-
tach a small untrusted valida-
tion block to each data block
that allows the data block to be
validated directly against a sin-
gle trusted hash value top hash.

Neither the validation block nor
the data block need be trusted;
errors in either will be detected.

From Wikipedia, “Merkle tree”

Example: To validate L2, use Hash 0-0 and Hash 1 to compute Top
Hash. Compare with trusted Top Hash. If they agree, can trust L2,
Hash 0-0, and Hash 1.

CPSC 467, Lecture 17 10/42

http://en.wikipedia.org/wiki/Merkle_tree


Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

Hash Trees

Tree notation

A hash tree is a complete binary tree with N = 2n leaves.

Label the nodes by strings σ ∈ {0, 1}∗, where σ describes the path
from the root to the node.

The root is denoted by vε, where ε is the null string. Its two sons
are v0 and v1.

The two children of any internal node vj are denoted by vj0 and vj1.

Let σk be the path from the root to the kth leaf. Then vσk denotes
the leaf node corresponding to data block bk .

CPSC 467, Lecture 17 11/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

Hash Trees

Node values in a hash tree

Let vτ be a node in a hash tree.

Define Hashτ , the hash value at node vτ :

I If vτ is a leaf, then τ = σk for some k, and

Hashτ = H(bk).

I If vτ is an internal node, then

Hashτ = H(Hashτ0 · Hashτ1).

CPSC 467, Lecture 17 12/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

Hash Trees

Companion nodes

Let vτ be an internal node, and let vτ ′ be its sibling in the tree.
We say that τ ′ is the companion of τ . τ ′ is obtained from τ by
flipping the last bit.

Example: The companion of 1011 is 1010 since v1011 and v1010 are
the two children of v101.

CPSC 467, Lecture 17 13/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

Hash Trees

Validation block

The validation block Bk for data block k consists of the sequence
of hash values Hashτ ′ for each companion τ ′ of each non-null
prefix τ of σk .

Example: Let σk = 1011.

I The non-null prefixes of σk are 1011, 101, 10, 1.

I The corresponding companions are 1010, 100, 11, 0.

I The validation block is

Bk = (Hash1010, Hash100, Hash11, Hash0).

CPSC 467, Lecture 17 14/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

Hash Trees

Block validation using hash trees

Validating data block bk requires top hash and validation block Bk .

One proceeds by computing Hashτ for each τ that is a prefix of
σk , working in order from longer to shorter prefixes.

I If τ = σk , then Hashτ = H(bk).

I Let τ be a proper prefix of σk . Assume w.l.o.g. that τ0 is a
prefix of σk and τ1 is its companion. Then Hashτ0 has just
been computed, and Hashτ1 is available in the validation
block. We compute

Hashτ = H(Hashτ0 · Hashτ1).

Validation succeeds if Hashε = top hash.

CPSC 467, Lecture 17 15/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

Lamport One-Time Signatures

CPSC 467, Lecture 17 16/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

Overview of Lamport signatures

Leslie Lamport devised a digital signature scheme based on hash
functions rather than on public key cryptography.

Its drawback is that each key pair can be used to sign only one
message.

We describe how Alice uses it to sign a 256-bit message. As wtih
other signature schemes, it suffices to sign the hash of the actual
message.

CPSC 467, Lecture 17 17/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

How signing works

The private signing key consists of a sequence r = (r1, . . . , r256) of
pairs (rk0 , r

k
1 ) of random numbers, 1 ≤ k ≤ 256.

Let m be a 256-bit message. Denote by mk the kth bit of m.

The signature of m is the sequence of numbers s = (s1, . . . , s256),
where

sk = rkmk
.

Thus, one element from the pair (rk0 , r
k
1 ) is used to sign mk , so

sk = rk0 if mk = 0 and sk = rk1 if mk = 1.

CPSC 467, Lecture 17 18/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

How verification works

The public verification key consists of the sequence
v = (v1, . . . , v256) of pairs (vk0 , v

k
1 ), where vkj = H(rkj ), and H is

any one-way function (such as a cryptographically strong hash
function). Thus, v comprises the hashes of all random numbers in
the private signing key r .

To verify a signed message (m, s), Bob checks that H(sk) = vkmk

for each k .

Assuming all is well, we have

H(sk) = H(rkmk
) = vkmk

for all k , so the verification succeeds.

CPSC 467, Lecture 17 19/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

Forgery resistance

Lamport signatures are one-time because half of the private key is
released when it is used.

The revealed rkj would allow anyone to construct a valid signature
of the same message m, but that signature is already known and
valid.

However, if other numbers of the private key are ever disclosed,
then Eve could in general produce valid signatures of messages
that have never been signed by Alice.

CPSC 467, Lecture 17 20/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

How to forge if the key is reused

Suppose Alice signs m and m′ using the same private key.

Suppose further that m and m′ differ in two bits j and `. Then Eve
can create a signature for the new message m′′, where

m′′k =

{
m′j if k = j

mk if k 6= j

Example: m = 01101, m′ = 00100. They differ in bit positions
j = 2 and ` = 5. Then Eve can produce a valid signature for
m′′ = 00101 even though Alice never signed m′′.

CPSC 467, Lecture 17 21/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

Merkle Signatures

CPSC 467, Lecture 17 22/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

Merkle signature scheme

The Merkle signature scheme applies hash trees to Lamport
signatures to allow a large number N = 2n of messages to be
signed, yet each can be verified using the same short trusted
verification key.

It works by creating N Lamport signing keys R1, . . . ,RN and N
corresponding verification keys V1, . . .VN . The i th message is
signed using key pair (Ri ,Vi ).

CPSC 467, Lecture 17 23/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

Reducing the size of the trusted verification key

The problem here is the need for Bob to obtain and store the N
verification keys.

Rather than distributing all Vi in advance, Vi is sent to Bob along
with the i th signed message since it is only needed to verify that
one message.

But this creates the problem of validating Vi , since how does Bob
know that Vi is genuine rather than a fake designed to make a
forged signature look good?

CPSC 467, Lecture 17 24/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

Hash trees to the rescue

Validating received data is what hash trees are good at.

When Alice creates the N Lamport key pairs (Ri ,Vi ), she puts all
Vi into a hash tree, computes top hash, and makes it public.

When she signs the i th message m, she creates a Lamport
signature s using the pair (Ri ,Vi ) as before.

She then sends Bob (m, s) along with Vi and Bi , where Bi is the
validation block for Vi .

CPSC 467, Lecture 17 25/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

Verifying the Merkle signature

We assume Bob knows top hash. He validates the signed message
(m, (s, i ,Vi ,Bi )) in two steps:

1. He uses the Lamport signature verification algorithm with
verification key Vi to check that (m, s) is valid.

2. He checks that Vi is consistent with top hash.

Step 1 is done exactly the same as before, i.e., Bob checks that
H(sk) = vkmk

for each k .

For step 2, Bob validates Vi against the hash tree by walking up
the tree from leaf i to root, computing the hash of each node in
turn. For this, he uses the hash values stored in Bi . He checks that
the final hash value equals the stored top hash.

CPSC 467, Lecture 17 26/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

Authentication Using Passwords

CPSC 467, Lecture 17 27/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

Authentication problem

The authentication problem

The authentication problem is to identify with whom one is
communicating.

For example, if Alice and Bob are communicating over a network,
then Bob would like to know that he is talking to Alice and not to
someone else on the network.

Knowing the IP address or URL is not adequate since Mallory
might be in control of intermediate routers and name servers.

As with signature schemes, we need some way to differentiate the
real Alice from other users of the network.

CPSC 467, Lecture 17 28/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

Authentication problem

Possible authentication factors

Alice can be authenticated in one of three ways:

1. By something she knows;

2. By something she possesses;

3. By something she is.

Examples:

1. A secret password;

2. A smart card;

3. Biometric data such as a fingerprint.

CPSC 467, Lecture 17 29/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

Passwords authentication schemes

Passwords

Assume that Alice possess some secret that is not known to
anyone else. She authenticates herself by proving that she knows
the secret.

Password mechanisms are widely used for authentication.

In the usual form, Alice authenticates herself by sending her
password to Bob.

Bob checks that it matches Alice’s password and grants access.

This is the scheme that is used for local logins to a computer and
is also used for remote authentication on many web sites.

CPSC 467, Lecture 17 30/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

Passwords authentication schemes

Weaknesses of password schemes

Password schemes have two major security weaknesses.

1. Passwords may be exposed to Eve when being used.

2. After Alice authenticates herself to Bob, Bob can use Alice’s
password to impersonate Alice.

CPSC 467, Lecture 17 31/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

Passwords authentication schemes

Password exposure

Passwords sent over the network in the clear are exposed to various
kinds of eavesdropping, ranging from ethernet packet sniffers on
the LAN to corrupt ISP’s and routers along the way.

The threat of password capture in this way is so great that one
should never send a password over the internet in the clear.

CPSC 467, Lecture 17 32/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

Passwords authentication schemes

Some precautions

Users of the old insecure Unix tools should switch to secure
replacements such as ssh, slogin, and scp, or kerberized versions of
telnet and ftp.
Do any of you even know what the insecure tools were called?

Web sites requiring user logins generally use the TSL/SSL
(Transport Layer Security/Secure Socket Layer) protocol to
encrypt the connection, making it relatively safe to transmit
passwords to the site, but some do not.

Depending on how your browser is configured, it will warn you
whenever you attempt to send unencrypted data back to the server.

CPSC 467, Lecture 17 33/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

Passwords authentication schemes

Password propagation

After Alice’s password reaches the server, it is no longer the case
that only she knows her password.

Now the server knows it, too!

This is no problem if Alice only uses her password to log into that
that particular server.

However, if she uses the same password for other web sites, the
first server can impersonate Alice to any other web site where Alice
uses the same password.

CPSC 467, Lecture 17 34/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

Passwords authentication schemes

Multiple web sites

Users these days typically have accounts with dozens or hundreds
of different web sites. (I personally have over 300.)

The temptation is strong to use the same username-password pairs
on all sites so that they can be easily remembered.

But then anyone with access to the password database on one site
can log into Alice’s account on any of the other sites.

Typically different sites protect data of very differing sensitivity.

An on-line shopping site may only be protecting a customer’s
shopping cart, whereas a banking site allows access to a customer’s
bank account.

CPSC 467, Lecture 17 35/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

Passwords authentication schemes

Password policy advice

My advice is, use a different password for each account.

Of course, nobody can keep dozens of different passwords straight,
so the downside of my suggestion is that the passwords must be
written down and kept safe, or stored in a properly-protected
password vault.

If the primary copy gets lost or compromised, then one should have
a backup copy so that one can go to all of the sites ASAP and
change the passwords (and learn if the site has been compromised).

The real problem with simple password schemes is that Alice is
required to send her secrets to other parties in order to use them.
We will later explore authentication schemes that avoid this.

CPSC 467, Lecture 17 36/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

Secure password storage

Secure password storage

Another issue with traditional password authentication schemes is
the need to store the passwords on the server for later verification.

I The file in which passwords are store is highly sensitive.

I Operating system protections can (and should) be used to
protect it, but they are not sufficient.

I Legitimate sysadmins might use passwords found there to log
into users’ accounts at other sites.

I Hackers who manage to break into the computer and obtain
root privileges can do the same thing.

I Backup copies may not be subject to the same system
protections, so someone with access to a backup device might
read everybody’s password from it.

CPSC 467, Lecture 17 37/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

Secure password storage

Storing encrypted passwords

Rather than store passwords in the clear, it is usual to store
“encrypted” passwords.

That is, the hash value of the password under some cryptographic
hash function is stored instead of the password itself.

CPSC 467, Lecture 17 38/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

Secure password storage

Using encrypted passwords

The authentication function

I takes the cleartext password from the user,

I computes its hash value,

I compares the computed hash value with the stored value.

Since the password file does not contain the actual password, and
it is computationally difficult to invert a cryptographic hash
function, knowledge of the hash value does not allow an attacker
to easily find the password.

CPSC 467, Lecture 17 39/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

Dictionary attacks

Dictionary attacks on encrypted passwords

Access to an encrypted password file opens up the possibility of a
dictionary attack.

Many users choose weak passwords—words that appear in an
English dictionary or in other available sources of text.

If one has access to the password hashes of legitimate users on the
computer (such as is contained in /etc/passwd on Unix), an
attacker can hash every word in the dictionary and then look for
matches with the password file entries.

CPSC 467, Lecture 17 40/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

Dictionary attacks

Harm from dictionary attacks

A dictionary attack is quite likely to succeed in compromising at
least a few accounts on a typical system.

Even one compromised account is enough to allow the hacker to
log into the system as a legitimate user, from which other kinds of
attacks are possible that cannot be carried out from the outside.

CPSC 467, Lecture 17 41/42



Outline Hashed Data Structures Lamport Signatures Merkle Signatures Passwords

Dictionary attacks

Salt

Salt is a way to make dictionary attacks more expensive.

I Salt is a random number that is stored along with the hashed
password in the password file.

I The hash function takes two arguments, password and salt,
and produces a hash value.

I Because the salt is stored (in the clear) in the password file,
the user’s password can be easily verified.

I The same password hashes differently depending on the salt.

I A successful dictionary attack now has to encrypt the entire
dictionary with every salt value that appears in the password
file being attacked.

I This increases the cost of the attack by orders of magnitude.

CPSC 467, Lecture 17 42/42


	Hashed Data Structures
	Motivation: Peer-to-peer file sharing networks
	Hash lists
	Hash Trees

	Lamport One-Time Signatures
	Merkle Signatures
	Authentication Using Passwords
	Authentication problem
	Passwords authentication schemes
	Secure password storage
	Dictionary attacks


