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Zero Knowledge Interactive Proofs (ZKIP)
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Zero knowledge interactive proofs (continued)

Last time we saw two examples of zero knowledge interactive
proofs:

I Simplified Feige-Fiat-Shamir authentication protocol.

I Secret cave protocol.

We now look at ZKIP’s in greater detail.
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Isomorphism

Graph isomorphism problem

Two undirected graphs G and H are said to be isomorphic if there
exists a bijection π from vertices of G to vertices of H that
preserves edges.

That is, {x , y} is an edge of G iff {π(x), π(y)} is an edge of H.

The graph isomorphism problem is, given graphs G and H, to
determine whether or not G and H are isomorphic.
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Isomorphism

Graph Isomorphism

Graph G Graph H Isomorphism π

π(a) = 1
π(b) = 6
π(c) = 8
π(d) = 3
π(g) = 5
π(h) = 2
π(i) = 4
π(j) = 7

From Wikipedia, https://en.wikipedia.org/wiki/Graph isomorphism
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Isomorphism

Complexity of graph isomorphism

No polynomial time algorithm for solving graph isomorphism is
known, but this problem is also not known to be NP-hard.

It follows that there is no known polynomial time algorithm for
finding the isomorphism π given two isomorphic graphs G and H.
Why?

László Babai claims that graph isomorphism is in quasipolynomial
time, that is, time of the form

2O(log(n)c )

for some constant c . This is a huge improvement over the best
prior result. (See László Babai Graph Isomorphism.)
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Isomorphism

A zero-knowledge proof for isomorphism

Suppose G0 and G1 are public graphs, and Alice knows an
isomorphism π : G0 → G1.

Using a zero-knowledge proof, Alice can prove to Bob that she
knows π without revealing any information about π. In particular,
she convinces Bob that the graphs really are isomorphic.

However, the proof is non-transferrable, so Bob cannot turn around
and convince Carol of that fact.
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Isomorphism

Interactive proof of graph isomorphism

Alice Bob

1. Simultaneously choose a
random isomorphic copy H
of G0 and an isomorphism
τ : G0 → H.

H−→
2.

b←− Choose random b ∈ {0, 1}.
3. If b = 0, let σ = τ .

If b = 1, let σ = τ ◦ π−1.
σ−→ Check σ(Gb) = H.
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Isomorphism

Validity of isomorphism IP

The protocol is similar to the simplified Feige-Fiat-Shamir protocol

If both Alice and Bob follow this protocol, Bob’s check always
succeeds.

I When b = 0, Alice send τ in step 3, and Bob checks that τ is
an isomorphism from G0 to H.

I When b = 1, the function σ that Alice computes is an
isomorphism from G1 to H. This is because π−1 is an
isomorphism from G1 to G0 and τ is an isomorphism from G0

to H. Composing them gives an isomorphism from G1 to H,
so again Bob’s check succeeds.
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Isomorphism

Isomorphism IP is zero knowlege
The protocol is zero knowledge (at least informally) because all
Bob learns is a random isomorphic copy H of either G0 or G1 and
the corresponding isomorphism.

This is information that he could have obtained by himself without
Alice’s help.

What convinces him that Alice really knows π is that in order to
repeatedly pass his checks, the graph H of step 1 must be
isomorphic to both G0 and G1.

Moreover, Alice knows isomorphisms σ0 : G0 → H and
σ1 : G1 → H since she can produce them upon demand.

Hence, she also knows an isomorphism π from G0 to G1, since
σ−1
1 ◦ σ0 is such a function.
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Feige-Fiat-Shamir

Reprise: A simplified one-round FFS protocol

Recall:

I n = pq, where p and q are distinct large primes.

I v ∈ QRn.

I s is the smallest square root of v−1 (mod n).

I n and v are public. s is Alice’s secret.

FFS protocol:

Alice Bob

1. Choose random r ∈ Zn.

Compute x = r2 mod n.
x−→

2.
b←− Choose random b ∈ {0, 1}.

3. Compute y = rsb mod n.
y−→ Check x = y2vb mod n.
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Feige-Fiat-Shamir

Properties of FFS protocol

We make three claims for the FFS protocol.

1. [Completeness] When both Alice and Bob are honest, Bob’s
check always succeeds.

2. [Soundness] If Mallory attempts to impersonate Alice without
knowing her secret s, Bob’s check will fail with probability at
least 1/2.

3. [Zero knowledge] Anything that Mallory can compute while
interacting with Alice in the FFS protocol could also be
computed without Alice’s involvement. In particular, if Mallory
can find Alice’s secret s after running the FFS protocol, then
he could have found s without ever talking to Alice.
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Feige-Fiat-Shamir

Completeness

We claimed last time that when both parties are honest, Bob’s
check

x = y2vb mod n.

succeeds because

y2vb ≡ (rsb)2vb ≡ r2(s2v)b ≡ x(v−1v)b ≡ x (mod n).

In a little more detail, we consider the two cases separately:

I b = 0: Then y = r and y2 ≡ r2 ≡ x (mod n).

I b = 1: Then y ≡ rs (mod n) and s2 ≡ v−1 (mod n), so

y2v ≡ r2s2v ≡ r2v−1v ≡ r2 ≡ x (mod n).
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Feige-Fiat-Shamir

Soundness

Theorem
Suppose Mallory doesn’t know a square root of v−1. Then Bob’s
verification will fail with probability at least 1/2.

Proof.
To successfully fool Bob, Mallory must come up with x in step 1
and y in step 3 satisfying x = y2vb mod n.

Mallory sends x in step 1 before Bob chooses b, so she does not
know which value of b to expect.

When Mallory receives b, she responds by sending a value yb to
Bob.

We consider two cases. (continued. . . )
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Feige-Fiat-Shamir

Proof: case 1

Proof (continued).

Case 1: There is at least one b ∈ {0, 1} for which yb fails to satisfy

x = y2vb mod n.

Since b = 0 and b = 1 each occur with probability 1/2, this means
that Bob’s verification will fail with probability at least 1/2, as
desired.

(continued. . . )
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Feige-Fiat-Shamir

Proof: case 2

Proof (continued).

Case 2: y0 and y1 both satisfy the verification equation, so
x = y20 mod n and x = y21 v mod n.

We can solve these equations for v−1 to get

v−1 ≡ y21 x
−1 ≡ y21 y

−2
0 (mod n)

But then y1y
−1
0 mod n is a square root of v−1.

Since Mallory was able to compute both y1 and y0, then she was
also able to compute a square root of v−1, contradicting the
assumption that she doesn’t “know” a square root of v−1.
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Feige-Fiat-Shamir

Successful cheating with probability 1/2

We remark that it is possible for Mallory to cheat with success
probability 1/2.

I She guesses the bit b that Bob will send her in step 2 and
generates a pair (x , y).

I If she guesses b = 0, then she chooses x = r2 mod n and
y = r mod n, just as Alice would have done.

I If she guesses b = 1, then she chooses y arbitrarily and
x = y2v mod n.

She proceeds to send x in step 1 and y in step 3.

The pair (x , y) is accepted by Bob if Mallory’s guess of b turns out
to be correct, which will happen with probability 1/2.
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Feige-Fiat-Shamir

Zero knowledge

We now consider the case of an honest Alice interacting with a
dishonest Mallory pretending to be Bob, or simply a dishonest Bob
who wants to capture Alice’s secret.

Alice would like assurance that her secret is protected if she follows
the protocol, regardless of what Mallory (or Bob) does.

Consider what Mallory knows at the end of the protocol.
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Feige-Fiat-Shamir

Mallory sends b = 0

Suppose Mallory sends b = 0 in step 2.

Then she ends up with a pair (x , y), where y is a random number
and x is its square modulo n.

Neither of these numbers depend in any way on Alice secret s, so
Mallory gets no direct information about s.

It’s also of no conceivable use to Mallory in trying to find s by
other means, for she can compute such pairs by herself without
involving Alice.

If having such pairs would allow her find a square root of v−1, then
she was already able to compute square roots, contrary to the
assumption that finding square roots modulo n is difficult.
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Feige-Fiat-Shamir

Mallory sends b = 1

Suppose Mallory sends b = 1 in step 2.

Now she ends up with the pair (x , y), where x = r2 mod n and
y = rs mod n.

While y might seem to give information about s, observe that y
itself is just a random element of Zn. This is because r is random,
and the mapping r → rs mod n is one-to-one for all s ∈ Z∗

n. Hence,
as r ranges through all possible values, so does y = rs mod n.

Mallory learns nothing from x that she could not have computed
herself knowing y , for x = y2v mod n.

Again, all she ends up with is a random number (y in this case)
and a quadratic residue x that she can compute knowing y .
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Feige-Fiat-Shamir

Mallory learns nothing from (x , y)

In both cases, Mallory ends up with information that she could
have computed without interacting with Alice.

Hence, if she could have discovered Alice’s secret by talking to
Alice, then she could have also done so on her own, contradicting
the hardness assumption for computing square roots.

This is the sense in which Alice’s protocol releases zero knowledge
about her secret.
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Abstraction

FFS authentication and isomorphism IP

We have seen two examples of zero knowledge interactive proofs of
knowledge of a secret.

In the simplified Feige-Fiat-Shamir authentication scheme, Alice’s
secret is a square root of v−1.

In the graph isomorphism protocol, her secret is the isomorphism π.

In both cases, the protocol has the form that Alice sends Bob a
“commitment” string x , Bob sends a query bit b, and Alice replies
with a response yb.

Bob then checks the triple (x , b, yb) for validity.
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Abstraction

FFS/Isomorphism comparison (continued)

In both protocols, neither triple (x , 0, y0) nor (x , 1, y1) alone give
any information about Alice’s secret, but y0 and y1 can be
combined to reveal her secret.

In the FFS protocol, y1y
−1
0 mod n is a square root of v−1.

(Note: Since v−1 has four square roots, the revealed square root might

not be the same as Alice’s secret, but it is equally valid as a means of

impersonating Alice.)

In the graph isomorphism protocol, y−1
1 ◦ y0 is an isomorphism

mapping G0 to G1.

CPSC 467, Lecture 19 24/37



Outline ZKIP Information Splitting PKI

Abstraction

Other materials on zero knowledge

Here are some links to other interesting materials on zero
knowledge.

I How to explain zero-knowledge protocols to your children
gives a different version of the Secret Cave protocol along
with other stories illustrating other aspects of zero knowledge,
such as non-transferrability of proof.

I Using a zero-knowledge protocol to prove you can solve a
sudoku is a video of a Skype session in which Katie Steckles
proves her sudoku-solving ability to Christian Perfect.

I Cryptographic and Physical Zero-Knowledge Proof Systems
for Solutions of Sudoku Puzzles is the paper describing the
sudoku solution protocol upon which the video above is based.
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Information Splitting

CPSC 467, Lecture 19 26/37



Outline ZKIP Information Splitting PKI

Another viewpoint

One way to view these protocols is that Alice splits her secret into
two parts, y0 and y1.

By randomization, Alice is able to convince Bob that she really has
(or could produce on demand) both parts, but in doing so, she is
only forced to reveal one of them.

Each part by itself is statistically independent of the secret and
hence gives Bob no information about the secret.

Together, they can be used to recover the secret.

CPSC 467, Lecture 19 27/37



Outline ZKIP Information Splitting PKI

Secret splitting

This is an example of secret splitting or secret sharing, an
important topic in its own right. We have already seen other
examples of secret sharing.

In the one-time pad cryptosystem, the message m is split into two
parts: the key k are the ciphertext c = m ⊕ k .

Bob, knowing both k and c, recovers m from by computing c ⊕ k.

Assuming k is picked randomly, then both k and c are uniformly
distributed random bit strings, which is why Eve learns nothing
about m from k or c alone.

What’s different with zero knowledge proofs is that Bob has a way
to check the validity of the parts that he gets during the protocol.
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The Big Picture

Much of cryptography is concerned with splitting a piece of
information s into a collection of shares s1, . . . , sr .

Certain subsets of shares allow s to be easily recovered; other
subsets are insufficient to allow any useful information about s to
be easily obtained.

In the simplest form, s is split into two shares a and b. Neither
share alone gives useful information about s, but together they
reveal s.
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Examples of information splitting

I One-time pad: s is broken into a key k and a ciphertext c ,
where |k| = |c | and s = k ⊕ c .

I AES: s is broken into a short key k and a long ciphertext c ,
where s = Dk(c).

I Secret splitting: s is broken into equal-length shares s1 and s2,
where s = s1 ⊕ s2.
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Public Key Infrastructure (PKI) and Trust
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Share distribution

A key problem (pun intended) in any use of cryptography is how
the various parties to a protocol obtain their respective shares.

For conventional symmetric cryptography, this is known as the key
distribution problem.

For public key systems, the public shares are provided through a
public key infrastructure (PKI).
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Desired properties of a PKI

A PKI should allow any user to obtain the correct public key (and
perhaps other information) for a user.

The information provided must be correct.

The user must trust that it is correct.
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Centralized PKI

The first idea for a PKI is a centralized database run by a trusted
3rd party, e.g., the government.

Problems:

I Centralized systems are brittle.

I Difficult to find a single entity that is universally trusted.
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Hierarchy of trust

The most widely used PKI today is based on X.509 certificates and
the hierarchy of trust.

A certificate is a package of information that binds a user to a
public key.

To be trusted, a certificate must be signed by a trusted certificate
authority (CA).

To validate the signature, one must obtain and validate a trusted
certificate of the signing CA.
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Where does trust stop?

The roots of the PKI hierarchy are trusted CA’s that are
well-known.

Your browser is distributed with trusted certificates for the root
CA’s.

Any other certificate can be valided by obtaining a chain of trust
leading to a root certificate.

For this scheme to work, one relies on the CA’s to take reasonable
care not to issue bogus certificates.

Recent revelations show that not all root CA’s are trustworthy.
Even a single bad root CA can break the entire system.
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Web of trust

A variant PKI is the web of trust.

Here, the trust relationship is a graph, not a tree.

The basic rule is to trust a certificate if it is signed by one or more
trusted parties.

Anyone can act as a CA, so one must only trust the signatures of
trustworthy signers.
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