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Computational Knowledge

What does Bob learn from Alice?

We have seen several examples of zero knowledge proofs but no
careful definition of what it means to be “zero knowledge”.

The intuition that “Bob learns nothing from Alice” surely isn’t
true.

After running the FFS protocol, for example, Bob learns the
quadratic residue x that Alice computed in the first step.

He didn’t know x before, nor did he and Alice know any quadratic
residues in common other than the public number v .

By zero knowledge, we want to capture the notion that Bob learns
nothing that might be useful in turning an intractable computation
into a tractable one.
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Computational Knowledge

A general client process for interacting with Alice

Consider an arbitrary feasible algorithm for performing some
computation, i.e., suppose Mallory is trying to compute some
random function f (z).

We regard Mallory as a networked probabilistic polynomial time
(NPPT) Turing machine. Mallory has an input tape, an output
tape, and a network interface that allows her to talk to Alice.

From time to time, Mallory plays Bob’s role in some
zero-knowledge protocol with Alice, say FFS for definiteness.

If Mallory successfully computes f (z) in this way, we say that she
does so with Alice’s help.
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Computational Knowledge

A view of Mallory

In more detail, here’s how Mallory’s computation of f (z) works:

I z is placed on Mallory’s input tape.

I From time to time, Mallory contacts Alice and begins FFS.

I Alice sends a number x that Mallory reads.

I Later, Mallory sends a bit b to Alice.

I Later still, Mallory reads Alice’s response y .

I Mallory continues computing, possibly running FFS again.

I If Mallory halts, the answer f (z) is found on her output tape.
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Computational Knowledge

A Mallory-simulator

A Mallory-simulator, whom we’ll call Sam, is a program like
Mallory, but he lacks network access and can’t talk to Alice.

Alice’s protocol is zero knowledge if every random function f (z)
that can be computed by some Mallory with Alice’s help can also
be computed by some Sam without Alice’s help.

In other words, whatever Mallory does with the help of Alice, Sam
can do alone.
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Computational Knowledge

Why Alice’s secret is safe

We assume that finding square roots modulo n = pq is hard. More
precisely, we assume that no PPT algorithm can find any square
root x ∈ √y (mod n) of a quadratic residue y with non-negligible
success probability.

Theorem
Under the above assumption, no NPPT algorithm Mallory (n, v)
that interacts with Alice using FFS can find her secret s with
non-negligible success probability.

It follows that Alice’s secret is safe when she runs FFS.
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Computational Knowledge

Proof that Alice’s secret remains private

Suppose some NPPT Mallory with inputs n and v is able to output
s with non-negligible success probability with Alice’s help.

Because FFS is zero-knowledge, one can construct a Mallory
simulator Sam that outputs s with the same success probability,
without Alice’s help.

But this contradicts the assumption that taking square roots is
hard, since if Sam were to exist, he could be turned into a
general-purpose square-root algorithm.

We conclude that Alice’s secret remains secure when she runs FFS.
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Computational Knowledge

Constructing a simulator

To show that a particular interactive protocol is zero knowledge,
one must show how to construct Sam for arbitrary NPPT
programs Mallory.

Here’s a sketch of how to generate a triple (x , b, y) for the FFS
protocol.

b = 0: Sam generates x and y the same way Alice does—by
taking x = r2 mod n and y = r mod n.

b = 1: Sam chooses y at random and computes
x = y2v mod n.

What he can’t do (without knowing Alice’s secret) is to generate
both triples for the same value x .
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Computational Knowledge

A simulator for FFS
Here’s the code for Sam:

1. Simulate Mallory until she requests a value from Alice.

2. Save Mallory’s state as Q.

3. Choose a random value b̂ ∈ {0, 1}.
4. Generate a valid random triple (x , b̂, y).

5. Pretend that Alice sent x to Mallory.

6. Continue simulating Mallory until she is about to send a value
b to Alice.

7. If b 6= b̂, reset Mallory to state Q and return to step 3.

8. Otherwise, continue simulating Mallory until she requests
another value from Alice. Pretend that Alice sent her y and
continue.

9. Continue simulating Mallory in this way until she halts.
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Computational Knowledge

Properties of the simulator

The probability that b = b̂ in step 7 is 1/2; hence, the expected
number of times Sam executes lines 3–7 is only 2.

Sam outputs the same answers as Mallory with the same
probability distribution. Requires some work to show.

Hence, the FFS protocol is zero knowledge.

Note that this proof depends on Sam’s ability to generate triples of
both kinds without knowing Alice’s secret.
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Composing ZK

Composing Zero-Knowledge Proofs
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Composing ZK

Serial composition

One round of the simplified FFS protocol has probability 0.5 of
error. That is, an Alice-impostor can fool Bob half the time.

This is unacceptably high for most applications.

Repeating the protocol t times reduces error probability to 1/2t .

Taking t = 20, for example, reduces the probability of error to less
than on in a million.

The downside of such serial repetition is that it also requires t
round trip messages between Alice and Bob (plus a final message
from Alice to Bob).

CPSC 467, Lecture 20 15/40



Outline Formalizing ZK QR Finding sqrt

Composing ZK

Parallel composition of zero-knowledge proofs

One could run t executions of the protocol in parallel.

Let (xi , bi , yi ) be the messages exchanged during the i th execution
of the simplified FFS protocol, 1 ≤ i ≤ t.

In a parallel execution,

I Alice sends (x1, . . . , xt) to Bob,

I Bob sends (b1, . . . , bt) to Alice,

I Alice sends (y1, . . . , yt) to Bob,

I Bob checks the t sets of values he has received and accepts
only if all checks pass.
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Composing ZK

Simulation proof does not extend to parallel execution

A parallel execution is certainly attractive in practice, for it reduces
the number of round-trip messages to only 11

2 .

The downside is that the resulting protocol may not be zero
knowledge by our definition.

Intuitively, the important difference is that Bob gets to know all of
the xi ’s before choosing the bi ’s.
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Composing ZK

Problem extending the simulator to the parallel case

While it seems implausible that this would actually help a cheating
Bob to compromise Alice’s secret, the simulation proof used to
show that a protocol is zero knowledge no longer works.

To extend the simulator construction to the parallel composition:

I First Sam would have to guess (b̂1, . . . b̂t).

I He would construct the xi ’s and yi ’s as before.

I When Mallory’s program reaches the point that she generates
the bi ’s, the chance is very high that some of Sam’s guesses
were wrong, and he will be forced to go back and try again.

Indeed, the probability that all t initial guesses are correct is
only 1/2t .
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Quadratic Residues Revisited
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QR reprise

Quadratic residues play a key role in the Feige-Fiat-Shamir zero
knowledge authentication protocol.

They can also be used to produce a secure probabilistic
cryptosystem and a cryptographically strong pseudorandom bit
generator.

Before we can proceed to these protocols, we need some more
number-theoretic properties of quadratic residues.
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Euler criterion

Euler criterion

The Euler criterion gives a feasible method for testing membership
in QRp when p is an odd prime.

Theorem (Euler Criterion)

An integer a is a non-trivial1 quadratic residue modulo an odd
prime p iff

a(p−1)/2 ≡ 1 (mod p).

1A non-trivial quadratic residue is one that is not equivalent to 0 (mod p).
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Euler criterion

Proof of Euler Criterion

Proof in forward direction.
Let a ≡ b2 (mod p) for some b 6≡ 0 (mod p). Then

a(p−1)/2 ≡ (b2)(p−1)/2 ≡ bp−1 ≡ 1 (mod p)

by Euler’s theorem, as desired.
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Euler criterion

Proof of Euler Criterion (continued)

Proof in reverse direction.
Suppose a(p−1)/2 ≡ 1 (mod p). Clearly a 6≡ 0 (mod p). We find a
square root b of a modulo p.

Let g be a primitive root of p. Choose k so that a ≡ gk (mod p),
and let ` = (p − 1)k/2. Then

g ` ≡ g (p−1)k/2 ≡ (gk)(p−1)/2 ≡ a(p−1)/2 ≡ 1 (mod p).

Since g is a primitive root and g ` ≡ 1 (mod p), then φ(p) |`.
Hence, `/φ(p) = `/(p − 1) = k/2 is an integer.

Let b = gk/2. Then b2 ≡ gk ≡ a (mod p), so b is a non-trivial
square root of a modulo p, as desired.
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QR crypto

A hard problem associated with quadratic residues

Let n = pq, where p and q are distinct odd primes.

Recall that each a ∈ QRn has 4 square roots, and 1/4 of the
elements in Z∗

n are quadratic residues.

Some elements of Z∗
n are easily recognized as non-residues, but

there is a subset of non-residues (which we denote by Q00
n ) that

are hard to distinguish from quadratic residues without knowing p
and q.
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QR crypto

Quadratic residues modulo n = pq
Let n = pq, p, q distinct odd primes.

We divide the numbers in Z∗
n into four classes depending on their

membership in QRp and QRq.2

I Let Q11
n = {a ∈ Z∗

n | a ∈ QRp ∩QRq}.
I Let Q10

n = {a ∈ Z∗
n | a ∈ QRp ∩QNRq}.

I Let Q01
n = {a ∈ Z∗

n | a ∈ QNRp ∩QRq}.
I Let Q00

n = {a ∈ Z∗
n | a ∈ QNRp ∩QNRq}.

Under these definitions, QRn = Q11
n

QNRn = Q00
n ∪ Q01

n ∪ Q10
n

2To be strictly formal, we classify a ∈ Z∗
n according to whether or not

(a mod p) ∈ QRp and whether or not (a mod q) ∈ QRq.
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QR crypto

Quadratic residuosity problem

Definition (Quadratic residuosity problem)

The quadratic residuosity problem is to decide, given
a ∈ Q00

n ∪ Q11
n , whether or not a ∈ Q11

n .

Fact
There is no known feasible algorithm for solving the quadratic
residuosity problem that gives the correct answer significantly more
than 1/2 the time for uniformly distributed random a ∈ Q00

n ∪Q11
n ,

unless the factorization of n is known.
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QR crypto

Securely encrypting single bits

Goldwasser and Micali devised a probabilistic public key
cryptosystem based on the assumed hardness of the quadratic
residuosity problem that allows one to securely encrypt single bits.

The idea is to encrypt a “0” by a random residue of QRn and a
“1” by a random non-residue in Q00

n . Any ability to decrypt the bit
is tantamount to solving the quadratic residuosity problem.
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QR crypto

Goldwasser-Micali probabilistic cryptosystem

Key Generation

The public key consists of a pair e = (n, y), where n = pq for
distinct odd primes p, q, and y is any member of Q00

n .

The private key consists of the triple d = (n, y , p).

The message space is M = {0, 1}. (Single bits!)

The ciphertext space is C = Q00
n ∪ Q11

n .
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QR crypto

Goldwasser-Micali probabilistic cryptosystem (cont.)

Encryption
To encrypt m ∈M, Alice chooses a random r ∈ Z∗

n and sets
a = r2 mod n. The result a is a random element of QRn = Q11

n .

If m = 0, set c = a (which is in Q11
n ).

If m = 1, set c = ay mod n (which is in Q00
n ).

Decryption
Bob, knowing the private key p, can use the Euler Criterion to
quickly determine whether or not c ∈ QRp and hence whether
c ∈ Q11

n or c ∈ Q00
n , thereby determining m.
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QR crypto

Goldwasser-Micali probabilistic cryptosystem (cont.)

Security
Eve’s problem of finding m given c is equivalent to the problem of
testing if c ∈ Q11

n , given that c ∈ Q00
n ∪ Q11

n .

This is just the quadratic residuosity problem, assuming the
ciphertexts are uniformly distributed. One can show:

I Every element of Q11
n is equally likely to be chosen as the

ciphertext c in case m = 0;

I Every element of Q00
n is equally likely to be chosen as the

ciphertext c in case m = 1.

If the messages are also uniformly distributed, then any element of
Q00

n ∪ Q11
n is equally likely to be the ciphertext.
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Summary

Important facts about quadratic residues

1. If p is odd prime, then |QRp| = |Z∗
p|/2, and for each

a ∈ QRp, |
√
a| = 2.

2. If n = pq, p 6= q odd primes, then |QRn| = |Z∗
n|/4, and for

each a ∈ QRn, |
√
a| = 4.

3. Euler criterion: a ∈ QRp iff a(p−1)/2 ≡ 1 (mod p), p odd
prime.

4. If p is odd prime, a ∈ QRp, can feasibly find y ∈
√
a. (See

appendix.)

5. If n = pq, p 6= q odd primes, then distinguishing Q00
n from

Q11
n is believed to be infeasible. Hence, infeasible to find

y ∈
√
a. Why?

If not, one could attempt to find y ∈
√
a, check that y2 ≡ a

(mod n), and conclude that a ∈ Q11 if successful.
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Appendix: Finding Square Roots
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Special primes

Finding square roots modulo prime p ≡ 3 (mod 4)

The Euler criterion lets us test membership in QRp for prime p,
but it doesn’t tell us how to quickly find square roots. They are
easily found in the special case when p ≡ 3 (mod 4).

Theorem
Let p ≡ 3 (mod 4), a ∈ QRp. Then b = a(p+1)/4 ∈

√
a (mod p).

Proof.
p + 1 is divisible by 4, so (p + 1)/4 is an integer. Then

b2 ≡ (a(p+1)/4)2 ≡ a(p+1)/2 ≡ a1+(p−1)/2 ≡ a · 1 ≡ a (mod p)

by the Euler Criterion.
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General primes

Finding square roots for general primes

We now present an algorithm due to D. Shanks3 that finds square
roots of quadratic residues modulo any odd prime p.

3Shanks’s algorithm appeared in his paper, “Five number-theoretic
algorithms”, in Proceedings of the Second Manitoba Conference on Numerical
Mathematics, Congressus Numerantium, No. VII, 1973, 51–70. Our treatment
is taken from the paper by Jan-Christoph Schlage-Puchta”, “On Shank’s
Algorithm for Modular Square Roots”, Applied Mathematics E-Notes, 5
(2005), 84–88.
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General primes

Shank’s algorithm

Let p be an odd prime. Write φ(p) = p − 1 = 2st, where t is odd.
(Recall: s is # trailing 0’s in the binary expansion of p − 1.)

Because p is odd, p − 1 is even, so s ≥ 1.
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General primes

A special case

In the special case when s = 1, then p − 1 = 2t, so p = 2t + 1.

Writing the odd number t as 2`+ 1 for some integer `, we have

p = 2(2`+ 1) + 1 = 4`+ 3,

so p ≡ 3 (mod 4).

This is exactly the case that we handled above.
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General primes

Overall structure of Shank’s algorithm

Let p − 1 = 2st be as above, where p is an odd prime.

Assume a ∈ QRp is a quadratic residue and u ∈ QNRp is a
quadratic non-residue.

We can easily find u by choosing random elements of Z∗
p and

applying the Euler Criterion.

The goal is to find x such that x2 ≡ a (mod p).
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General primes

Shanks’s algorithm

1. Let s, t satisfy p − 1 = 2st and t odd.
2. Let u ∈ QNRp.
3. k = s
4. z = ut mod p
5. x = a(t+1)/2 mod p
6. b = at mod p
7. while (b 6≡ 1 (mod p)) {
8. let m be the least integer with b2

m ≡ 1 (mod p)

9. y = z2
k−m−1

mod p
10. z = y2 mod p
11. b = bz mod p
12. x = xy mod p
13. k = m
14. }
15. return x
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General primes

Loop invariant

The congruence
x2 ≡ ab (mod p)

is easily shown to be a loop invariant.

It’s clearly true initially since x2 ≡ at+1 and b ≡ at (mod p).

Each time through the loop, a is unchanged, b gets multiplied by
y2 (lines 10 and 11), and x gets multiplied by y (line 12); hence
the invariant remains true regardless of the value of y .

If the program terminates, we have b ≡ 1 (mod p), so x2 ≡ a, and
x is a square root of a (mod p).
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General primes

Termination proof (sketch)

The algorithm terminates after at most s − 1 iterations of the loop.

To see why, we look at the orders4 of b and z (mod p) and show
the following loop invariant:

At the start of each loop iteration (before line 8), ord(b)
is a power of 2 and ord(b) < ord(z) = 2k .

After line 8, m < k since 2m = ord(b) < 2k . Line 13 sets k = m
for the next iteration, so k decreases on each iteration.

The loop terminates when b ≡ 1 (mod p). Then ord(b) = 1 < 2k ,
so k ≥ 1. Hence, the loop is executed at most s − 1 times.

4Recall that the order of an element g modulo p is the least positive integer
k such that g k ≡ 1 (mod p).
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