e
Outline Secure PRSG Distributions Legendre/Jacobi

0000000 0000000 00000000000
: :

CPSC 467: Cryptography and Computer Security

Michael J. Fischer

Lecture 21
November 15, 2017

CPSC 467, Lecture 21 1/31
00

e
Outline Secure PRSG Distributions Legendre/Jacobi

0000000 0000000 00000000000
: :

Secure Random Sequence Generators
Pseudorandom sequence generators
Looking random

Similarity of Probability Distributions
Cryptographically secure PRSG
Indistinguishability

The Legendre and Jacobi Symbols
The Legendre symbol
Jacobi symbol
Computing the Jacobi symbol

: :
CPSC 467, Lecture 21 2/31

e
Outline Secure PRSG Distributions Legendre/Jacobi

0000000 0000000 00000000000
: :

Secure Random Sequence Generators

CPSC 467, Lecture 21 3/31
00

Outline Secure PRSG Distributions Legendre/Jacobi

®000000 0000000 00000000000
:

:
Pseudorandom sequence generators
:

Pseudorandom sequence generators

A pseudorandom sequence generator (PRSG) is a function that
maps a short seed to a long “random-looking” output sequence.

The seed typically has length between 32 and a few thousand bits.

The output is typically much longer, ranging from thousands or
millions of bits or more, but polynomially related to the seed
length.

The output of a PRSG is a sequence that is supposed to “look
random”.

CPSC 467, Lecture 21 4/31

Outline Secure PRSG Distributions Legendre/Jacobi
0®00000 0000000 00000000000
: :
Pseudorandom sequence generators
: :

Incremental generators

In practice, a PRSG is implemented as a co-routine that outputs
the next block of bits in the sequence each time it is called. For
example, the linux function

void srandom(unsigned int seed)

sets the 32-bit seed. Each subsequent call on

long int random(void)
returns an integer in the range [0, ..., RAND_MAX].

On my machine, the return value is 31 bits long (even though
sizeof (long int) is 64).

| |
CPSC 467, Lecture 21 5/31

Outline Secure PRSG Distributions Legendre/Jacobi

[e]e] lelelele) 0000000 00000000000
:

Pseudorandom sequence generators
:

Limits on incremental generators

Incremental generators typically are based on state machines with a
finite number of states, so the output eventually becomes periodic.

The period of random() is said to be approximately 16 * (23! —1).

The output of a PRSG becomes predictable from past outputs
once the generator starts to repeat. The point of repetition defines
the maximum usable output length, even if the implementation
allows bits to continue to be produced.

|
CPSC 467, Lecture 21 6/31

Outline Secure PRSG Distributions Legendre/Jacobi
000®000 0000000 00000000000
: :
Looking random
: :

What does it mean for a string to look random?

For the output of a PRSG to look random:

> It must pass common statistical tests of randomness. For
example, the frequencies of 0's and 1's in the output sequence
must be approximately equal.

» It must lack obvious structure, such as having all 1's occur in
pairs.

> It must be difficult to find the seed given the output sequence,
since otherwise the whole sequence is easily generated.

> It must be difficult to correctly predict any generated bit, even
knowing all of the other bits of the output sequence.

> It must be difficult to distinguish its output from truly random
bits.

CPSC 467, Lecture 21 7/31
00

Outline Secure PRSG Distributions Legendre/Jacobi
0000®00 0000000 00000000000
; ;
Looking random
; ;

Chaitin/Kolmogorov randomness

Chaitin and Kolmogorov defined a string to be “random” if its
shortest description is almost as long as the string itself.

By this definition, most strings are random by a simple counting
argument.

For example, 011011011011011011011011011 is easily described as
the pattern 011 repeated 9 times. On the other hand,
101110100010100101001000001 has no obvious short description.

While philosophically very interesting, these notions are somewhat
different than the statistical notions that most people mean by
randomness and do not seem to be useful for cryptography.

| |
CPSC 467, Lecture 21 8/31

Outline Secure PRSG Distributions Legendre/Jacobi

00000@0 0000000 00000000000

: :
Looking random

: :

Cryptographically secure PRSG

A PRSG is said to be cryptographically secure if its output cannot
be feasibly distinguished from truly random bits.

In other words, no feasible probabilistic algorithm behaves
significantly differently when presented with an output from the
PRSG as it does when presented with a truly random string of the
same length.

We argue that this definition encompasses all of the desired
properties for “looking random” discussed earlier,

| |
CPSC 467, Lecture 21 9/31

Outline Secure PRSG Distributions Legendre/Jacobi

000000e 0000000 00000000000
:

Looking random
:

Looking ahead

In the rest of this lecture, we carefully define what it means for a
PRSG to be secure.

We then show how to build a PRSG that is provably secure. It is
based on the quadratic residuosity assumption (lecture 20) on
which the Goldwasser-Micali probabilistic cryptosystem is based.

:
CPSC 467, Lecture 21 10/31

00

http://zoo.cs.yale.edu/classes/cs467/2017f/lectures/ln20.pdf

e
Outline Secure PRSG Distributions Legendre/Jacobi

0000000 0000000 00000000000
: :

Similarity of Probability Distributions

CPSC 467, Lecture 21 11/31
00

Outline Secure PRSG Distributions Legendre/Jacobi

0000000 ®000000 00000000000
:

Cryptographically secure PRSG
:

Formal definition of PRSG

Formally, a pseudorandom sequence generator G is a function from
a domain of seeds S to a domain of strings X.

We generally assume that all of the seeds in & have the same
length n and that X is the set of all binary strings of length
¢ ={(n).

() is called the expansion factor of G.

(-) is assumed to be a polynomial such that n < ¢(n).

:
CPSC 467, Lecture 21 12/31

Outline Secure PRSG Distributions Legendre/Jacobi
0000000 0®00000 00000000000
: :
Cryptographically secure PRSG
: :

Output distribution of a PRSG

Let S be a uniformly distributed random variable over the set S of
possible seeds.

The output distribution of G is a random variable X € X defined
by X = G(S).
For x € X,
_ Hs€S1G(s) =x}

S| '
Thus, Pr[X = x] is the probability of obtaining x as the output of
the PRSG for a randomly chosen seed.

Pr[X =x]

: :
CPSC 467, Lecture 21 13/31

Outline Secure PRSG Distributions Legendre/Jacobi
0000000 00®0000 00000000000
:

:
Cryptographically secure PRSG

Randomness amplifier

We think of G(-) as a randomness amplifier.

We start with a short truly random seed and obtain a long random
string distributed according to X, which is very much non-uniform.

Because |S| < 2", |X| = 2¢, and n < ¢, most strings in X’ are not
in the range of G and hence have probability 0.

For the uniform distribution U over X, all strings have the same
non-zero probability 1/2¢.

U is what we usually mean by a truly random variable on /-bit
strings.

CPSC 467, Lecture 21 14/31

Outline Secure PRSG Distributions Legendre/Jacobi

0000000 000e000 00000000000
:

:
Indistinguishability
:

Computational indistinguishability

We have just seen that the probability distributions of X = G(S)
and U are quite different.

Nevertheless, it may be the case that all feasible probabilistic
algorithms behave essentially the same whether given a sample
chosen according to X or a sample chosen according to U.

If that is the case, we say that X and U are computationally
indistinguishable and that G is a cryptographically secure
pseudorandom sequence generator.

CPSC 467, Lecture 21 15/31

Outline Secure PRSG Distributions Legendre/Jacobi
0000000 0000®00 00000000000
: :
Indistinguishability
: :

Some implications of computational indistinguishability
Before going further, let me describe some functions G for which
G(S) is readily distinguished from U.

Suppose every string x = G(s) has the form by bybabybsbs . . ., for
example 0011111100001100110000....

Algorithm A(x) outputs “G" if x is of the special form above, and
it outputs “U" otherwise.

A will always output “G" for inputs from G(S). For inputs from U,
A will output “G” with probability only

202 1
20 T o
How many strings of length ¢ have the special form above?

: :
CPSC 467, Lecture 21 16/31

Outline Secure PRSG Distributions Legendre/Jacobi
0000000 00000@0 00000000000
; ;
Indistinguishability
; ;

Judges
Formally, a judge is a probabilistic polynomial-time algorithm J
that takes an /-bit input string x and outputs a single bit b.

Thus, it defines a probabilistic function from X to {0,1}.

This means that for every input x, the output is 1 with some
probability py, and the output is O with probability 1 — py.

If the input string is a random variable X, then the probability that
the output is 1 is the weighted sum of py over all possible inputs x,
where the weight is the probability Pr[X = x| of input x occurring.

Thus, the output value is itself a random variable J(X), where
PriJ(X) =1 =) Pr[X =x] - px.
x€EX

: :
CPSC 467, Lecture 21 17/31

Outline Secure PRSG Distributions Legendre/Jacobi

0000000 000000e 00000000000
:

Indistinguishability
:

Formal definition of indistinguishability

Two random variables X and Y are e-indistinguishable by judge J if
|Pr[J(X) =1] - Pr[J(Y) =1]| < e

Intuitively, we say that G is cryptographically secure if G(S) and U
are e-indistinguishable for suitably small € by all judges that do not
run for too long.

A careful mathematical treatment of the concept of
indistinguishability must relate the length parameters n and /¢, the
error parameter €, and the allowed running time of the judges

Further formal details may be found in Goldwasser and Bellare.

:
CPSC 467, Lecture 21 18/31

http://cseweb.ucsd.edu/~mihir/papers/gb.pdf

e
Outline Secure PRSG Distributions Legendre/Jacobi

0000000 0000000 00000000000
: :

The Legendre and Jacobi Symbols

CPSC 467, Lecture 21 19/31
00

Outline Secure PRSG Distributions Legendre/Jacobi

0000000 0000000 00000000000
: :

Notation for quadratic residues

The Legendre and Jacobi symbols form a kind of calculus for
reasoning about quadratic residues and non-residues.

They lead to a feasible algorithm for determining membership in
Q% U Q}0. Like the Euclidean gcd algorithm, the algorithm does
not require factorization of its arguments.

The existence of this algorithm also explains why the
Goldwasser-Micali cryptosystem can't use all of QNR,, in the
encryption of “1”, for those elements in QO U Q10 are readily
determined to be in QNR,,.

: :
CPSC 467, Lecture 21 20/31

Outline Secure PRSG Distributions

Legendre/Jacobi
0000000 0000000

®0000000000
:

:
Legendre

Legendre symbol

Let p be an odd prime, a an integer. The Legendre symbol (%) is
a number in {—1,0,+1}, defined as follows:

= 0 ifa=0 (mod p)

(a) 41 if ais a non-trivial quadratic residue modulo p
—1 if ais not a quadratic residue modulo p

By the Euler Criterion, we have

Theorem
Let p be an odd prime. Then
<i) = a("2) (mod p)
p
Note that this theorem holds even when p|a.

:
CPSC 467, Lecture 21 21/31

Outline Secure PRSG Distributions Legendre/Jacobi
0000000 0000000 0®000000000
:

Legendre

Properties of the Legendre symbol

The Legendre symbol satisfies the following multiplicative property:

Fact
Let p be an odd prime. Then

(%)-G) (%)

Not surprisingly, if a; and a are both non-trivial quadratic
residues, then so is aja>. Hence, the fact holds when

a1 a
p p
:
CPSC 467, Lecture 21 22/31
00

Outline Secure PRSG Distributions Legendre/Jacobi
0000000 0000000 0000000000
: :
Legendre
: :

Product of two non-residues

Suppose a1 € QR,,, a2 € QR,,. The above fact asserts that the
product ajay is a quadratic residue since

(2)-(3) () -cons

> Let g be a primitive root of p.

Here's why.

» Write a; = g% (mod p) and a, = gk (mod p).

» Both k; and k» are odd since a;, a» ¢ QRP.

» But then ki + ko is even.

» Hence, glkit%)/2 is a square root of ajar = ght™% (mod p),

so ajap is a quadratic residue.

: :
CPSC 467, Lecture 21 23/31

Outline Secure PRSG Distributions Legendre/Jacobi
0000000 0000000 00O®0000000
: :
Jacobi
: :

The Jacobi symbol

The Jacobi symbol extends the Legendre symbol to the case where
the “denominator” is an arbitrary odd positive number n.

Let n be an odd positive integer with prime factorization Hfle p;€i.
We define the Jacobi symbol by

(2)-11(2)

The symbol on the left is the Jacobi symbol, and the symbol on
the right is the Legendre symbol.

(By convention, this product is 1 when k =0, so (2) =1.)

The Jacobi symbol extends the Legendre symbol since the two
definitions coincide when n is an odd prime.

: :
CPSC 467, Lecture 21 24/31

Outline Secure PRSG Distributions Legendre/Jacobi
0000000 0000000 0000®000000
: :
Jacobi
: :

Meaning of Jacobi symbol

What does the Jacobi symbol mean when n is not prime?
» If (2) =+1, a might or might not be a quadratic residue.
> If (2) =0, then ged(a, n) # 1.
» If (2) = —1 then ais definitely not a quadratic residue.

CPSC 467, Lecture 21 25/31
00

Outline Secure PRSG Distributions Legendre/Jacobi
0000000 0000000 00000@00000
: :
Jacobi
: :

Jacobi symbol = +1 for n = pq

Let n = pq for p, g distinct odd primes. Since

0-6 o
there are two cases that result in (2) =1
L(3)=(5) =t
> () =)=

CPSC 467, Lecture 21 26/31
00

Outline Secure PRSG Distributions Legendre/Jacobi

0000000 0000000 00000080000
: :

Jacobi
: :

Case of both Jacobi symbols = +1

it (2) = (2) = +1. then 2 € QR, NQR, = Q3%
It follows by the Chinese Remainder Theorem that a € QR,,.

This fact was implicitly used in the proof sketch that |/a| = 4.

CPSC 467, Lecture 21 27/31
00

Outline Secure PRSG Distributions Legendre/Jacobi
0000000 0000000 0000000@000
: :
Jacobi
: :

Case of both Jacobi symbols = —1

It (2) = (2) = ~1, then 2 € QNR, N QNR, = QY.
In this case, a is not a quadratic residue modulo n.

Such numbers a are sometimes called “pseudo-squares” since they
have Jacobi symbol 1 but are not quadratic residues.

CPSC 467, Lecture 21 28/31
00

Outline Secure PRSG Distributions Legendre/Jacobi

0000000 0000000 00000000800
:

Identities
:

Computing the Jacobi symbol

The Jacobi symbol (%) is easily computed from its definition
(equation 1) and the Euler Criterion, given the factorization of n.

Similarly, gcd(u, v) is easily computed without resort to the
Euclidean algorithm given the factorizations of u and v.

The remarkable fact about the Euclidean algorithm is that it lets
us compute ged(u, v) efficiently, without knowing the factors of u
and v.

A similar algorithm allows us to compute the Jacobi symbol (%)
efficiently, without knowing the factorization of a or n.

:
CPSC 467, Lecture 21 29/31

Outline Secure PRSG Distributions Legendre/Jacobi
0000000 0000000 00000000080
: :
Identities
: :

|dentities involving the Jacobi symbol

The algorithm is based on identities satisfied by the Jacobi symbol:
1 ifn=1
0) —
L®={s trr1
2. (2) = 1 if n==+1 (mod 8)
' 1 -1 if n=43 (mod 8);
3. (2) = (%) ifay = a (mod n);

(F) =G ()

s () -{ _

| |
CPSC 467, Lecture 21 30/31

00

SALS)

»

(2) ifa,nodd and —(a=n=3 (mod 4))
s

(2) ifa,noddand a=n=3 (mod 4).

Sl

Outline Secure PRSG Distributions Legendre/Jacobi

0000000 0000000 0000000000 e
: :

Identities
: :

A recursive algorithm for computing Jacobi symbol

/* Precondition: a, n >= 0; n is odd */
int jacobi(int a, int n) {

if (a == 0) /* identity 1 */
return (n==1) ? 1 : 0;
if (a == 2) /* identity 2 */

switch (n%8) {
case 1: case 7: return 1;
case 3: case 5: return -1;

T

if (a>n) /* identity 3 */
return jacobi(a’n, n);

if (a%2 == 0) /* identity 4 */
return jacobi(2,n)*jacobi(a/2, n);

/* a is odd */ /* identity 5 */

return (a%4 == 3 & n)4 == 3) 7 -jacobi(n,a) : jacobi(n,a);

}
| CPSC 467, Lecture 21 31/31 |

00

	Secure Random Sequence Generators
	Pseudorandom sequence generators
	Looking random

	Similarity of Probability Distributions
	Cryptographically secure PRSG
	Indistinguishability

	The Legendre and Jacobi Symbols
	The Legendre symbol
	Jacobi symbol
	Computing the Jacobi symbol

