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Mutual Privacy-Preserving Protocols
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Privacy

We have looked at several protocols that are intended to keep
Alice’s information secret, both from Bob and from a malicious
adversary masquarding as Bob.

We now look at other protocols whose goal is to control the
release of partial information about Alice’s secret. Just enough
information should be released to carry out the purpose of the
protocol but no more.

We’ll see several examples in the following sections.
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Bit Commitment Problem
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Bit guessing game

Alice and Bob want to play a guessing game over the internet.

Alice says,

“I’m thinking of a bit. If you guess my bit correctly, I’ll
give you $10. If you guess wrong, you give me $10.”

Bob says,

“Ok, I guess zero.”

Alice replies,

“Sorry, you lose. I was thinking of one.”
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Preventing Alice from changing her mind

While this game may seem fair on the surface, there is nothing to
prevent Alice from changing her mind after Bob makes his guess.

Even if Alice and Bob play the game face to face, they still must do
something to commit Alice to her bit before Bob makes his guess.

For example, Alice might be required to write her bit down on a
piece of paper and seal it in an envelope.

After Bob makes his guess, he opens the envelope to know
whether he won or lost.

Writing down the bit commits Alice to that bit, even though Bob
doesn’t learn its value until later.
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Bit commitment

A bit-commitment is an encryption of a bit using a cryptosystem
with a special property.

1. The bit is hidden from anyone not knowing the secret key.

2. There is only one valid way of decrypting the ciphertext, no
matter what key is used.

Thus, if c = Ek(b):

I It is hard to find b from c without knowning k .

I For every k ′, b′, if Ek ′(b′) = c , then b = b′.
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Bit commitment intuition

In other words,

I If Alice produces a commitment c to a bit b, then b cannot
be recovered from c without knowing Alice’s secret encoding
key k .

I There is no key k ′ that Alice might release that would make it
appear that c is a commitment of the bit 1− b.
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Bit-commitments as cryptographic envelopes

More formally, a bit commitment or blob or cryptographic envelope
is an electronic analog of a sealed envelope.

Intuitively, a blob has two properties:

1. The bit inside the blob remains hidden until the blob is
opened.

2. The bit inside the blob cannot be changed, that is, the blob
cannot be opened in different ways to reveal different bits.
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Bit-commitment primitives

A blob is produced by a protocol commit(b) between Alice and
Bob. We assume initially that only Alice knows b.

At the end of the commit protocol, Bob has a blob c containing
Alice’s bit b, but he should have no information about b’s value.

Later, Alice and Bob can run a protocol open(c) to reveal the bit
contained in c to Bob.
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Requirements for bit commitment

Alice and Bob do not trust each other, so each wants protection
from cheating by the other.

I Alice wants to be sure that Bob cannot learn b after she runs
commit(b), even if he cheats.

I Bob wants to be sure that all successful runs of open(c)
reveal the same bit b′, no matter what Alice does.

We do not require that Alice tell the truth about her private bit b.
A dishonest Alice can always pretend her bit was b′ 6= b when
producing c . But if she does, c can only be opened to b′, not to b.

These ideas should become clearer in the protocols below.
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From QR cryptosystem

Bit Commitment Using QR Cryptosystem
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From QR cryptosystem

A simple (but inefficient) bit commitment scheme

Here’s a simple way for Alice to commit to a bit b.

1. Create a Goldwasser-Micali public key e = (n, y), where
n = pq.

2. Choose random r ∈ Z∗n, and use it to produce an encryption c
of b. (See lecture 20, slide 29.)

3. Send the blob (e, c) to Bob.

To open (e, c), Alice sends b, p, q, r to Bob.

Bob checks that n = pq, p and q are distinct odd primes, y ∈ Q00
n ,

and that c is the encryption of b based on r .
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From QR cryptosystem

Security of QR bit commitment

Alice can’t change her mind about b, since c either is or is not a
quadratic residue.

Bob cannot determine the value of b before Alice opens c since
that would amount to violating the quadratic residuosity
assumption.
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From PRSG

Bit Commitment Using Pseudorandom

Sequence Generators
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From PRSG

Bit commitment using a PRSG
Let Gρ(s) be the first ρ bits of G (s). (ρ is a security parameter.)

Alice Bob

To commit(b):
1.

r←− Choose random r ∈ {0, 1}ρ.
2. Choose random seed s.

Let y = Gρ(s).
If b = 0 let c = y .

If b = 1 let c = y ⊕ r .
c−→ c is commitment.

To open(c):

3. Send s.
s−→ Let y = Gρ(s).

If c = y then reveal 0.
If c = y ⊕ r then reveal 1.
Otherwise, fail.
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From PRSG

Security of PRSG bit commitment

Assuming G is cryptographically strong, then c will look random to
Bob, regardless of the value of b, so he will be unable to get any
information about b.

Why?

Assume Bob has advantage ε at guessing b when he can choose r
and is given c . Here’s a judge J for distinguishing G (S) from U.

I Given input y , J chooses random b and simulates Bob’s
cheating algorithm. J simulates Bob choosing r , computes
c = y ⊕ rb, and continues Bob’s algorithm to find a guess b̂
for b.

I If b̂ = b, J outputs 1.

I If b̂ 6= b, J outputs 0.
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From PRSG

The judge’s advantage

If y is drawn at random from U, then c is uniformly distributed
and independent of b, so J outputs 1 with probability 1/2.

If y comes from G (S), then J outputs 1 with the same probability
that Bob can correctly guess b.

Assuming G is cryptographically strong, then Bob has negligible
advantage at guessing b.
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From PRSG

Purpose of r

The purpose of r is to protect Bob against a cheating Alice.

Alice can cheat if she can find a triple (c, s0, s1) such that s0 opens
c to reveal 0 and s1 opens c to reveal 1.

Such a triple must satisfy the following pair of equations:

c = Gρ(s0)
c = Gρ(s1)⊕ r .

}
It is sufficient for her to solve the equation

r = Gρ(s0)⊕ Gρ(s1)

for s0 and s1 and then choose c = Gρ(s0).
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From PRSG

How big does ρ need to be?
We now count the number of values of r for which the equation

r = Gρ(s0)⊕ Gρ(s1)
has a solution.

Suppose n is the seed length, so the number of seeds is ≤ 2n.
Then the right side of the equation can assume at most 22n/2
distinct values.

Among the 2ρ possible values for r , only 22n−1 of them have the
possibility of a colliding triple, regardless of whether or not Alice
can feasibly find it.

Hence, by choosing ρ sufficiently much larger than 2n − 1, the
probability of Alice cheating can be made arbitrarily small.

For example, if ρ = 2n + 19 then her probability of successful
cheating is at most 2−20.
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From PRSG

Why does Bob need to choose r?

Why can’t Alice choose r , or why can’t r be fixed to some
constant?

If Alice chooses r , then she can easily solve r = Gρ(s0)⊕ Gρ(s1)
and cheat.

If r is fixed to a constant, then if Alice ever finds a colliding triple
(c , s0, s1), she can fool Bob every time.

While finding such a pair would be difficult if Gρ were a truly
random function, any specific PRSG might have special properties,
at least for a few seeds, that would make this possible.
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From PRSG

Example

For example, suppose r = 1ρ and Gρ(¬s0) = ¬Gρ(s0) for some s0.

Then taking s1 = ¬s0 gives
Gρ(s0)⊕Gρ(s1) = Gρ(s0)⊕Gρ(¬s0) = Gρ(s0)⊕¬Gρ(s0) = 1ρ = r .

By having Bob choose r at random, r will be different each time
(with very high probability).

A successful cheating Alice would be forced to solve
r = Gρ(s0)⊕ Gρ(s1) in general, not just for one special case.
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Coin-Flipping
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Flipping a common coin

Alice and Bob are in the process of getting a divorce and are trying
to decide who gets custody of their pet cat, Fluffy.

They both want the cat, so they agree to decide by flipping a coin:
heads Alice wins; tails Bob wins.

Bob has already moved out and does not wish to be in the same
room with Alice.

The feeling is mutual, so Alice proposes that she flip the coin and
telephone Bob with the result.

This proposal of course is not acceptable to Bob since he has no
way of knowing whether Alice is telling the truth when she says
that the coin landed heads.
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Making it fair

“Look Alice,” he says, “to be fair, we both have to be involved in
flipping the coin.”

“We’ll each flip a private coin and XOR our two coins together to
determine who gets Fluffy.”

“You should be happy with this arrangement since even if you
don’t trust me to flip fairly, your own fair coin is sufficient to
ensure that the XOR is unbiased.”
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A proposed protocol
This sounds reasonable to Alice, so she lets him propose the
protocol below, where 1 means “heads” and 0 means “tails”.

Alice Bob

1. Choose random bit

bA ∈ {0, 1}
bA−→.

2. Choose random bit
bB←− bB ∈ {0, 1}.

3. Coin outcome is Coin outcome is
b = bA ⊕ bB . b = bA ⊕ bB .

Alice considers this for awhile, then objects.

“This isn’t fair. You get to see my coin before I see yours,
so now you have complete control over the outcome.”
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Alice’s counter proposal

She suggests that she would be happy if the first two steps were
reversed, so that Bob flips his coin first, but Bob balks at that
suggestion.

They then both remember about blobs and decide to use blobs to
prevent either party from controlling the outcome. They agree on
the following protocol.
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A mutually acceptable protocol
Alice Bob

1. Choose random kA, sA ∈ KA.
kA, kB←−−→ Choose random kB , sB ∈ KB .

2. Choose random bit bA ∈ {0, 1}. Choose random bit bB ∈ {0, 1}.
cA = enclose(sA, kB , bA).

cA, cB←−−→ cB = enclose(sB , kA, bB).

3. Send sA.
sA, sB←−−→ Send sB .

4. bB = reveal(sB , kA, cB). bA = reveal(sA, kB , cA).
Coin outcome is b = bA ⊕ bB . Coin outcome is b = bA ⊕ bB .

At the completion of step 2, both Alice and Bob have each others’
commitment (something they failed to achieve in the past, which is
why they’re in the middle of a divorce now), but neither knows
the other’s private bit.

They learn each other’s bit at the completion of steps 3 and 4.
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Remaining asymmetry

While this protocol appears to be completely symmetric, it really
isn’t quite, for one of the parties completes step 3 before the other
one does.

Say Alice receives sB before sending sA.

At that point, she can compute bB and hence know the coin
outcome b.

If it turns out that she lost, she might decide to stop the protocol
and refuse to complete her part of step 3.
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Premature termination

What happens if one party quits in the middle or detects the other
party cheating?

So far, we’ve only considered the possibility of undetected cheating.

But in any real situation, one party might feel that he or she
stands to gain by cheating, even if the cheating is detected.
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Responses to cheating

Detected cheating raises complicated questions as to what happens
next.

I Does a third party Carol become involved?

I If so, can Bob prove to Carol that Alice cheated?

I What if Alice refuses to talk to Carol?

Think about Bob’s recourse in similar real-life situations and
consider the reasons why such situations rarely arise.

For example, what happens if someone

I fails to follow the provisions of a contract?

I ignores a summons to appear in court?
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A copycat attack

There is a subtle problem with the previous coin-flipping protocol.

Suppose Bob sends his message before Alice sends hers in each of
steps 1, 2, and 3.

Then Alice can choose kA = kB , cA = cB , and sA = sB rather than
following her proper protocol, so

reveal(sA, kB , cA) = reveal(sB , kA, cB).

In step 4, Bob will compute bA = bB and won’t detect that
anything is wrong. The coin outcome is b = bA ⊕ bA = 0.

Hence, Alice can force outcome 0 simply by playing copycat.
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Preventing a copycat attack

This problem is not so easy to overcome.

One possibility is for both Alice and Bob to check that kA 6= kB
after step 1.

That way, if Alice, say, chooses cA = cB = c and sA = sB = s on
steps 2 and 3, there still might be a good chance that

bA = reveal(s, kB , c) 6= reveal(s, kA, c) = bB .

However, depending on the bit commitment scheme, a difference
in only one bit in kA and kB might not be enough to ensure that
different bits are revealed.

In any case, it’s not enough that bA and bB sometimes differ.
For the outcome to be unbiased, we need Pr[bA 6= bB] = 1/2.
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A better idea

A better idea might be to both check that kA 6= kB after step 1 and
then to use h(kA) and h(kB) in place of kA and kB , respectively, in
the remainder of the protocol, where h is a hash function.

That way, even a single bit difference in kA and kB is likely to be
magnified to a large difference in the strings h(kA) and h(kB).

This should lead to the bits reveal(sA, h(kB), cA) and
reveal(sB , h(kA), cB) being uncorrelated, even if sA = sB and
cA = cB .
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A possible problem

The general properties for reveal given in the appendix do not
seem strong enough to imply that enclose(kA, kB , b) has a strong
enough dependence on kB to prevent cheating by an Alice who
knows a commitment c that she can open to reveal either 0 or 1.

For example, suppose enclose(kA, kB , b) does not depend on kB .

If Alice knows s0, k0, s1, k1 such that
enclose(s0, k0, 0) = enclose(s1, k1, 1) = c , it follows that
enclose(s0, kB , 0) = enclose(s1, kB , 1) = c for any kB . Hence,
reveal(s0, kB , c) = 0 and reveal(s1, kB , c) = 1.

The bit-commitment implementations using the QR cryptosystem
and using pseudorandom sequence generators both do strongly
depend on Bob’s random value kB .
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Appendix: Formalization of Bit Commitment

Schemes
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Formalization of bit commitment schemes

The above bit commitment protocols all have the same form.

We abstract from them a cryptographic primitive, called a bit
commitment scheme, which consists of a pair of key spaces KA
and KB, a blob space B, a commitment function

enclose : KA ×KB × {0, 1} → B,

and an opening function

reveal : KA ×KB × B → {0, 1, φ},

where φ means “failure”.

We say that a blob c ∈ B contains b ∈ {0, 1} if
reveal(kA, kB , c) = b for some kA ∈ KA and kB ∈ KB .
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Desired properties

These functions have three properties:

1. ∀kA ∈ KA, ∀kB ∈ KB ,∀b ∈ {0, 1},
reveal(kA, kB , enclose(kA, kB , b)) = b;

2. ∀kB ∈ KB ,∀c ∈ B,∃b ∈ {0, 1},∀kA ∈ KA,
reveal(kA, kB , c) ∈ {b, φ}.

3. No feasible probabilistic algorithm that attempts to distinguish
blobs containing 0 from those containing 1, given kB and c, is
correct with probability significantly greater than 1/2.
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Intuition

The intention is that kA is chosen by Alice and kB by Bob.
Intuitively, these conditions say:

1. Any bit b can be committed using any key pair kA, kB , and
the same key pair will open the blob to reveal b.

2. For each kB , all kA that successfully open c reveal the same
bit.

3. Without knowing kA, the blob does not reveal any significant
amount of information about the bit it contains, even when
kB is known.
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Comparison with symmetric cryptosystem

A bit commitment scheme looks a lot like a symmetric
cryptosystem, with enclose(kA, kB , b) playing the role of the
encryption function and reveal(kA, kB , c) the role of the
decryption function.

However, they differ both in their properties and in the
environments in which they are used.

Conventional cryptosystems do not require uniqueness condition 2,
nor do they necessarily satisfy it.
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Comparison with symmetric cryptosystem (cont.)

In a conventional cryptosystem, we assume that Alice and Bob
trust each other and both share a secret key k.

The cryptosystem is designed to protect Alice’s secret message
from a passive eavesdropper Eve.

In a bit commitment scheme, Alice and Bob cooperate in the
protocol but do not trust each other to choose the key.

Rather, the key is split into two pieces, kA and kB , with each
participant controlling one piece.
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A bit-commitment protocol from a bit-commitment scheme
A bit commitment scheme can be turned into a bit commitment
protocol by plugging it into the generic protocol:

Alice Bob

To commit(b):

1.
kB←− Choose random kB ∈ KB .

2. Choose random kA ∈ KA.

c = enclose(kA, kB , b).
c−→ c is commitment.

To open(c):

3. Send kA.
kA−→ Compute b = reveal(kA, kB , c).

If b = φ, then fail.
If b 6= φ, then b is revealed bit.
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The previous bit commitment protocols we have presented can all
be regarded as instances of the generic protocol.

For example, we get the second protocol based on symmetric
cryptography by taking

enclose(kA, kB , b) = EkA(kB · b),

and

reveal(kA, kB , c) =

{
b if kB · b = DkA(c)
φ otherwise.
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