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Locked Box Paradigm

Locked boxes

Protocols for coin flipping and for dealing a poker hand from a
deck of cards can be based on the intuitive notion of locked boxes.

This idea in turn can be implemented using commutative-key
cryptosystems.

We first present a coin-flipping protocol using locked boxes.
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Locked Box Paradigm

Preparing the boxes

Imagine two sturdy boxes with hinged lids that can be locked with
a padlock.

Alice writes “heads” on a slip of paper and “tails” on another.

“heads”, signed Alice “tails”, signed Alice

She places one of these slips in each box.
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Locked Box Paradigm

Alice locks the boxes

Alice puts a padlock on each box for which she holds the only key.

A A

She then gives both locked boxes to Bob, in some random order.
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Locked Box Paradigm

Bob adds his lock

Bob cannot open the boxes and does not know which box contains
“heads” and which contains “tails”.

He chooses one of the boxes and locks it with his own padlock, for
which he has the only key.

A A B

He gives the doubly-locked box back to Alice.
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Locked Box Paradigm

Alice removes her lock

Alice gets

A B

She removes her lock.

B

and returns the box to Bob.
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Locked Box Paradigm

Bob opens the box
Bob gets

B

He removes his lock

opens the box, and removes the slip of paper from inside.

“heads”, signed Alice

He gives the slip to Alice.
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Locked Box Paradigm

Alice checks that Bob didn’t cheat

At this point, both Alice and Bob know the outcome of the coin
toss.

Alice verifies that the slip of paper is one of the two that she
prepared at the beginning, with her handwriting on it.

She sends her key to Bob.
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Locked Box Paradigm

Bob checks that Alice didn’t cheat
Bob still has the other box.

A

He removes Alice’s lock,

opens the box, and removes the slip of paper from inside.

“tails”, signed Alice

He checks that it contains the other coin value.
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Locked Box Implementation

Locked Box Implementation
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Locked Box Implementation

Commutative-key cryptosystems

Alice and Bob can carry out this protocol electronically using any
commutative-key cryptosystem, that is, one in which
EA ◦ EB = EB ◦ EA.1

RSA is commutative for keys A and B with a common modulus n,
so we can use RSA in an unconventional way.

Rather than making the encryption exponent public and keeping
the factorization of n private, we turn things around.

1Recall the related notion of “commutative cryptosystem” of lecture 11 in
which the encryption and decryption functions for the same key commuted.
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Locked Box Implementation

RSA as a commutative-key cryptosystem

Alice and Bob jointly chose primes p and q, and both compute
n = pq.

Alice chooses an RSA key pair A = ((eA, n), (dA, n)), which she
can do since she knows the factorization of n.

Similarly, Bob chooses an RSA key pair B = ((eB , n), (dB , n))
using the same n.

Alice and Bob both keep their key pairs private (until the end of
the protocol, when they reveal them to each other to verify that
there was no cheating).
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Locked Box Implementation

Security remark

We note that this scheme may have completely different security
properties from usual RSA.

In RSA, there are three different secrets involved with the key: the
factorization of n, the encryption exponent e, and the decryption
exponent d .

We have seen previously that knowing n and any two of these
three pieces of information allows the third to be reconstructed.

Thus, knowing the factorization of n and e lets one compute d . It
is also possible to factor n given both e and d .

The way RSA is usually used, only e is public, and it is believed to
be hard to find the other two secrets.
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Locked Box Implementation

A new use for RSA

Here we propose making the factorization of n public but keeping e
and d private.

It may indeed be hard to find e and d , even knowing the
factorization of n, but if it is, that fact is not going to follow from
the difficulty of factoring n.

Of course, for security, we need more than just that it is hard to
find e and d .

We also need it to be hard to find m given c = me mod n.

This is reminiscent of the discrete log problem, but of course n is
not prime in this case.
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Locked Box Implementation

Coin-flipping using commutative-key cryptosystems

We now implement the locked box protocol using RSA in this new
way.

Here we assume that Alice and Bob initially know large primes p
and q.
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Locked Box Implementation

Alice Bob

1. Choose RSA key pair A with
modulus n = pq.

Choose RSA key pair B with
modulus n = pq.

2. Choose random r ∈ Z(n−1)/2.
Let mi = 2r + i , for i ∈ {0, 1}.
Let ci = EA(mi ) for i ∈ {0, 1}.
Let C = {c0, c1}.

C−→ Choose ca ∈ C .

3.
cab←− Let cab = EB(ca).

4. Let cb = DA(cab).
cb−→

5. Let m = DB(cb).
Let i = m mod 2.
Let r = (m − i)/2.
If i = 0 then “tails”.
If i = 1 then “heads”.

B←−
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Locked Box Implementation

Alice Bob

6. Let m = DB(cb).
Check m ∈ {m0,m1}.
If m = m0 then “tails”.
If m = m1 then “heads”.

A−→

7. Let c ′a = C − {ca}.
Let m′ = DA(c ′a).
Let i ′ = m′ mod 2.
Let r ′ = (m′ − i ′)/2.
Check i ′ 6= i and r ′ = r .
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Locked Box Implementation

Notes

In step (2), Alice chooses a random number r such that
r < (n − 1)/2.

This ensures that m0 = 2r and m1 = 2r + 1 are both in Zn.

Note that i and r can be efficiently recovered from mi since i is
just the low-order bit of mi and r = (mi − i)/2.
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Locked Box Implementation

Correctness when Alice and Bob are honest

When both Alice and Bob are honest, Bob computes
cab = EB(EA(mj)) for some j ∈ {0, 1}.

In step 4, Alice computes cb.
By the commutativity of EA and EB ,

cb = DA(EB(EA(mj))) = EB(mj).

Hence, in step 5, m = mj is one of Alice’s strings from step 2.
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Locked Box Implementation

A dishonest Bob
A dishonest Bob can control the outcome of the coin toss if he can
find two keys B and B ′ such that EB(ca) = EB′(c ′a), where
C = {ca, c ′a} is the set received from Alice in step 2.

In this case, cab = EB(EA(mj)) = EB′(EA(m1−j)) for some j . Then
in step 4, cb = DA(cab) = EB(mj) = EB′(m1−j).

Hence, mj = DB(cb) and m1−j = DB′(cb), so Bob can obtain both
of Alice’s messages and then send B or B ′ in step 5 to force the
outcome to be as he pleases.

To find such B and B ′, Bob would need to solve the equation

cea ≡ c ′a
e′

(mod n)

for e and e ′. Not clear how to do this, even knowing the
factorization of n.
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Locked Box Implementation

Card dealing using locked boxes

The same locked box paradigm can be used for dealing a 5-card
poker hand from a deck of cards.

Alice takes a deck of cards, places each card in a separate box, and
locks each box with her lock.

She arranges the boxes in random order and ships them off to Bob.

Bob picks five boxes, locks each with his lock, and send them back.

Alice removes her locks from those five boxes and returns them to
Bob.

Bob unlocks them and obtains the five cards of his poker hand.

Further details are left to the reader.
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Oblivious Transfer
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Generalization of coin-flipping protocol

In the locked box coin-flipping protocol, Alice has two messages
m0 and m1.

Bob gets one of them.

Alice doesn’t know which (until Bob tells her).

Bob can’t cheat to get both messages.

Alice can’t cheat to learn which message Bob got.

The oblivious transfer problem abstracts these properties from
particular applications such as coin flipping and card dealing.
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One-of-two oblivious transfer

In one-of-two oblivious transfer (OT2
1), Alice has two secrets, s0

and s1.

Bob always gets exactly one of the secrets, each with probability
1/2.

Alice does not know which one Bob gets.

The locked box protocol is one way to implement one-of-two
oblivious transfer.
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Another 1-of-2 OT protocol using blinding 2

Alice Bob

1. Secrets s0 and s1.
Choose RSA key (n, e, d).
Let yi = Ee(si ), i ∈ {0, 1}. n,e,y0,y1−→

2. Choose random b ∈ {0, 1}.
Choose random r ∈ Z∗n.

c←− Compute c = ybEe(r) mod n.

3. Let c ′ = Dd(c) ≡ sbr (mod n).
c′−→

4. Output c ′r−1 mod n = sb.

2This protocol is adapted from notes by David Wagner, U.C. Berkeley, CS276,
lecture 29, May 2006.
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Analysis

I In step 1, Alice sends Bob encryptions of both secrets.

I In step 2, Bob chooses one of Alice’s encryptions, blinds it,
and returns the result to Alice.

I In step 3, Alice decrypts whatever Bob sends her, which
allows Bob to unblind the decryption and recover the secret
he chose in step 2.

Alice’s other secret is safe assuming semi-honest parties (see
lecture 21) as long as RSA is secure under a limited chosen
ciphertext attack (since that is what Alice permits in step 3).

Bob’s blinding prevents Alice from knowing which secret he
learned.
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Blinding

Blinding is a powerful concept in privacy-preserving protocols.

Bob computes a blinding factor B by encrypting a random r ∈ Z∗n,
so B = Ee(r) mod n is also a random element of Z∗n.

Alice gets no information about b from c = ybB mod n in step 2
since c is just another random element in Z∗n.

Because Alice is using RSA, when she decrypts c , the resulting c ′

is also random.

c ′ = Dd(c) ≡ cd ≡ (ybB)d ≡ (seb r
e)d ≡ (sbr)ed ≡ sbr (mod n).

Bob removes the blinding factor by computing sb = c ′r−1 mod n.

CPSC 467, Lecture 24 29/54



Outline Locked Box Oblivious Transfer Millionaires Privacy-Preserving Computation Appendix

The Millionaires’ Problem
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The Millionaires’ Problem

The Millionaires’ problem, introduced by Andy Yao in 1982, began
the study of privacy-preserving multiparty computation.

Alice and Bob want to know who is the richer without revealing
how much they are actually worth.

Alice is worth I million dollars; Bob is worth J million dollars.

They want to determine whether or not I ≥ J, but at the end of
the protocol, neither should have learned any more about the other
person’s wealth than is implied by the truth value of the predicate
I ≥ J.
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Privacy-preserving multiparty computation

Another example is vote-counting.

Each voter has an input vi ∈ {0, 1} indicating their no/yes vote on
an issue.

The goal is to collectively compute
∑

vi while maintaining the
privacy of the individual vi .
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Privacy-Preserving Boolean Function

Evaluation
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Boolean circuits

Boolean functions computed by circuits

Let z̄ = f (x̄ , ȳ), where x̄ , ȳ , and z̄ are bit strings of lengths nx , ny ,
and nz , respectively, and f is a Boolean function computed by a
polynomial size Boolean circuit Cf with nx + ny input wires and nz
output wires.

Example:

AND

OR

XNOR

Alice

Bob

σ1

σ2

σ3

σ4

σ5

σ6

σ7
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Boolean circuits

Private evaluation

In a private evaluation of Cf , Alice furnishes the (private) input
data to the first nx input wires, and Bob furnishes the (private)
input data for the remaining ny input wires. The nz output wires
should contain the result z̄ = f (x̄ , ȳ). The corresponding
functionality is

F (x̄ , ȳ) = (z̄ , z̄).

Alice and Bob should learn nothing about each others inputs or the
intermediate values of the circuit, other than what is implied by
their own inputs and the output values z̄ .
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Boolean circuits

Circuit evaluation

An evaluation of a circuit assigns a Boolean value σw to each wire
of the circuit. The input wires are assigned the corresponding
input values.

Let G be a gate with input wires u and v and output wire w that
computes the Boolean function g(x , y). In a correct assignment,
σw = g(σu, σv ).

A complete evaluation of the circuit first assigns values to the
input wires and then works its way down the circuit, assigning a
value to the output wire of any gate whose inputs have already
received values.
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Boolean circuits

Private circuit evaluation

In a private circuit evaluation,

I Both Alice and Bob learn the output values of the circuit;

I Neither Alice nor Bob gain any information about each others
private input values except for whatever is implied by their
own input values and the circuit output.

We present two different schemes for privately evaluating a circuit:

I Value shares;

I Garbled circuits.
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Implementation Using Value Shares

Implementation Using Value Shares
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Implementation Using Value Shares

Value shares

In a private evaluation using value shares, we split each value σw
into two random shares aw and bw such that σw = aw ⊕ bw .

I Alice knows aw ; Bob knows bw .

I Neither share alone gives any information about σw , but
together they allow σw to be computed.

After all shares have been computed for all wires, Alice and Bob
exchange their shares aw and bw for each output wire w .

They are both then able to compute the circuit output.
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Implementation Using Value Shares

Obtaining the shares

We now describe how Alice and Bob obtain their shares while
maintaining the desired privacy.

There are three cases, depending on whether w is

1. An input wire controlled by Alice;

2. An input wire controlled by Bob;

3. The output wire of a gate G .
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Implementation Using Value Shares

Alices input wires

1. Input wire controlled by Alice:

Alice knows σw .

She generates a random share aw ∈ {0, 1} for herself and
sends Bob his share bw = aw ⊕ σw .
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Implementation Using Value Shares

Bobs input wires

2. Input wire controlled by Bob:

Bob knows σw .

Alice chooses a random share aw ∈ {0, 1} for herself.

She prepares a table T :

σ T [σ]

0 aw
1 aw ⊕ 1.

Bob requests T [σw ] from Alice via OT2
1 and takes his share to

be bw = T [σw ] = aw ⊕ σw .
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Implementation Using Value Shares

Obtaining shares for gate output wires

3. Output wire of a gate G :
Let G have input wires u, v and compute function g(x , y).
Alice chooses random share aw ∈ {0, 1} for herself.
She computes the table

T [0, 0] = aw ⊕ g(au, av )
T [0, 1] = aw ⊕ g(au, av ⊕ 1)
T [1, 0] = aw ⊕ g(au ⊕ 1, av )
T [1, 1] = aw ⊕ g(au ⊕ 1, av ⊕ 1)

(Equivalently, T [r , s] = aw ⊕ g(au ⊕ r , av ⊕ s).)

Bob requests T [bu, bv ] from Alice via OT4
1 and takes his share

to be bw = T [bu, bv ] = aw ⊕ g(σu, σv ).
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Implementation Using Value Shares

Remarks
1. Alice and Bobs shares for w are both independent of σw .

I Alices share is chosen uniformly at random.
I Bobs share is always the XOR of Alices random bit aw with

something independent of aw .

2. This protocol requires ny executions of OT2
1 to distribute the

shares for Bobs inputs, and one OT4
1 for each gate.3

3. This protocol assumes semi-honest parties.
4. This protocol generalizes readily from 2 to m parties.
5. Bob does not even need to know what function each gate G

computes. He only uses his private inputs or shares to request
the right line of the table in each of the several OT protocols.

3Note: The ny executions of OT2
1 can be eliminated by having Bob produce

the shares for his input wires just as Alice does for hers. Our approach has the
advantage of being more uniform since Alice is in charge of distributing the
shares for all wires.
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Implementation Using Garbled Circuits

Implementation Using Garbled Circuits
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Implementation Using Garbled Circuits

Garbled circuits

A very different approach to private circuit evaluation is the use of
garbled circuits.

The idea here is that Alice prepares a garbled circuit in which each
wire has associated with it a tag corresponding to 0 and a tag
corresponding to 1.

Associated with each gate is a template that allows the tag that
represent the correct output value to be computed from the tags
representing the input values.

This is all done in a way that keeps hidden the actual values that
the tags represent.
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Implementation Using Garbled Circuits

A sketch of the protocol

After creating the circuit, Alice, who knows all of the tags, uses
OT2

1 to send Bob the tags corresponding to values on the input
wires that he controls.

She also sends him the tags corresponding to the values on the
input wires that she controls.

Bob then evaluates the circuit all by himself, computing the output
tag for each gate from the tags on the input wires.
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Implementation Using Garbled Circuits

Finishing up

At the end, he knows the tags corresponding to the output wires.

Alice knows which Boolean values those tags represent, which she
sends to Bob (either before or after he has evaluated the circuit).

In this way, Bob learns the output of the circuit, which he then
sends to Alice.
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Implementation Using Garbled Circuits

Role of the tags

The scrambled gate is a 4-line table giving the output tag
corresponding to each of the possible 4 input values.

Each line of the table is encrypted differently.

The input tags to the gate allow the corresponding table item to
be decrypted.

Evaluating the circuit then amounts to decrypting ones way though
the circuit, gate by gate, until getting the output tag.

CPSC 467, Lecture 24 49/54



Outline Locked Box Oblivious Transfer Millionaires Privacy-Preserving Computation Appendix

Implementation Using Garbled Circuits

Remarks
1. The OT2

1 protocol steps used to distribute the tags for the
wires that Bob controls keeps his inputs private from Alice.
The privacy of Alices inputs and intermediate circuit values
from Bob relies on the encryption function used to hide the
association between tags and values.

2. The security of the protocol relies on properties of the
encryption function that we have not stated.

3. This protocol requires only ny executions of OT2
1 and hence

should be considerably faster to implement than the
share-based protocol.

4. This protocol also assumes semi-honest parties.
5. Doesnt easily generalize to more than two parties.
6. Bob doesnt need to know the function each gate computes.

He only needs the associated templates.
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Appendix: Problems at Least as Hard as

Factoring
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Factoring n of the form pq

We’ve seen several protocols involving computation over Z∗n, where
n is the product of two distinct odd primes p and q.

Associated with these protocols are other problems can be shown
to be at least as hard as factoring, since a feasible solution to any
of them could be used to factor n.

We give two examples.
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Finding square roots

Theorem
Let n = pq with p, q distinct odd primes. Let y ∈ QRn, and let
{±u,±v} be the four distinct square roots of y (mod n). Given
n, u, v, one can factor n in polynomial time.

Proof.
We have u2 ≡ v2 ≡ y (mod n), so n |(u2 − v2) = (u − v)(u + v).

Since u 6≡ ±v (mod n), then n does not divide (u − v) and n does
not divide (u + v). But n does divide (u − v)(u + v), so
d = gcd(u − v) is a proper divisor of n.

Hence, {d , n/d} = {p, q}.
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Finding RSA decryption exponent knowing public key

Theorem (Boneh4)

Given RSA parameters n, e, d, one can factor n in polynomial time.

Proof.
1. n = pq for p, q distinct odd primes.

2. φ(n) = (p − 1)(q − 1), so φ(n) is even.

3. ed ≡ 1 (mod φ(n)), so φ(n) |k, where k = ed − 1.

4. Can write k = 2tr with t ≥ 1 and r odd.

5. gk ≡ 1 (mod n) for every g ∈ Z∗n.

6. Compute sequence gk/2, gk/4, . . . , gk/2t . For 1/2 of the
g ∈ Z∗n, sequence contains x ∈

√
1, where x 6∈ {1,−1}.

7. Then gcd(x − 1, n) ∈ {p, q}.
4Dan Boneh, “Twenty Years of Attacks on the RSA Cryptosystem”, Notices

of the AMS 46, 2 (1999), 203–213.
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