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Man-in-the-middle attacks

An active attacker is one who can both read and alter messages en
route to their destinations.

We refer to such an attacker as “Mallory”, and we call such an
attack a man-in-the-middle attack.

In a modification attack, Mallory can modify the contents of a
message in specific semantically-meaningful ways even though
(s)he has no idea what the message actually is.
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Modification attack against the Caesar cipher
Suppose Alice sends c to Bob. Mallory intercepts it and changes c
to (c + 5) mod 26.

Even though she doesn’t know the key and cannot read m, she
knows that she has changed m to (m + 5) mod 26.

Why? Let’s do the calculations. (All arithmetic is modulo 26).

Dk(c ′) = Dk(c + 5) = c + 5− k = Dk(c) + 5 = m + 5.

Depending on the application, this could be a devastating attack.
Suppose Alice were a financial institution that was making a direct
deposit of m thousand dollars to Mallory’s bank account at the
Bob bank. By this attack, Mallory could get an extra 5 thousand
dollars put into her account each month.
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A modification attack on English vowels

In our encoding scheme, vowels are represented by even numbers:
A = 0, E = 4, I = 8, O = 14, and U = 20. If m is a vowel, then
m′ = (m + 5) mod 26 is guaranteed not to be a vowel.

How could Mallory use this to his advantage?
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A general’s orders
I Suppose Alice is a general sending an order to a field

commander whether or not to attack.

I She uses the Caesar cipher to encrypt the order.

I A vowel means to attack; a consonent to hold the position.

I She feels very clever for having encoded the attack bit in such
a non-obvious way.

I Mallory’s c + 5 transformation changes every “attack”
message to “don’t attack” (and some “don’t attack
messages” to “attack”).

I This effectively prevents Alice from attacking when it is to her
advantage.

The fact that she was using a cryptosystem for which perfect
secrecy is known did not protect her.
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Moral

The security of a system in practice depends critically on the kinds
of attacks available to an attacker.

In this case, the cryptosystem that is provably perfectly secure
against a passive eavesdropper using a ciphertext-only attack fails
miserably against a known plaintext attack or against an active
attacker.
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Basic Concepts from Probability and

Statistics
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Why do we need prob & stat?

Randomness is fundamental to cryptography.

I Randomness is the source of secrets.

I Statistical independence is the essence of
information-theoretic security.

I Computational security is measured in terms of probability of
failure.
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Probability distributions and events

We give a quick overview of probability theory.

A discrete probability distribution p assigns a real number
pω ∈ [0, 1] to each element ω of a probability space Ω such that∑

ω∈Ω

pω = 1.

An event E is a subset of Ω. The probability of E is

Pr[E] =
∑
ω∈E

pω.
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Conditional probability
Let E and F be events and assume Pr[F] 6= 0. The conditional
probability of E given F is defined by

Pr[E | F] =
Pr[E ∩ F]

Pr[F]
.

Intuitively, it is the probability that E holds given that F is known
to hold.

Example: Ω p

1 .2
2 .2
3 .3
4 .1
5 .2

E = {1, 2, 3}, F = {2, 3, 4}.
Pr[E] = .2 + .2 + .3 = .7
Pr[F] = .2 + .3 + .1 = .6
Pr[E ∩ F] = .2 + .3 = .5
Pr[E | F] = .2/.6 + .3/.6 = 5/6.
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Statistical independence

Formally, events E and F are statistically independent if
Pr[E | F] = Pr[E].

An equivalent definition is that Pr[E ∩ F] = Pr[E] · Pr[F].

This is easily seen by dividing both sides by Pr[F] and applying the
definition of Pr[E | F].

(This assumes Pr[F] 6= 0.)

CPSC 467, Lecture 6, September 17, 2020 13/30



Outline Modification Attack Prob & Stat Formal Security Definitions Appendix

Formal Security Definitions
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Information-theoretic security

Formal definition of information-theoretic security

Information-theoretic security places no limits on Eve’s
computational power and just looks at what information about m
can be gleaned by Eve from the ciphertext c.

To say that Eve learns nothing about m from c is captured by
saying m and c are statistically independent.

Definition
A cryptosystem is information-theoretically secure if
Pr[m] = Pr[m | c].

We also call this perfect secrecy.

See the Appendix for a detailed example of perfect secrecy of the
Basic Caesar Cipher.
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Computational security

A mathematical definition of computational security

Computational security results from the situation where Eve has
limited computational resources and her ability to compromise the
confidentiality of m is limited.

Typically we want to bound the likelihood that Eve can obtain
significant amounts of useful information about m.

For this, we need to look more carefully at probabilistic
assumptions.
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Computational security

Where do we assume randomness?

1. The message m is drawn at random from some arbitrary
probability distribution over the message space M. Both M
and the distribution are part of Eve’s a priori knowledge.

2. The secret key is chosen uniformly at random from the key
space K.

3. Eve has access to an independent source of randomness which
she may use while attempting to break the system. For
example, Eve can choose an element k ′ ∈ K at random. With
probability p = 1/|K|, her element k ′ is actually the correct
key k .
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Computational security

Independence

The three sources of randomness are all assumed to be statistically
independent.

Eve’s random numbers do not depend on (nor give any information
about) the message or key used by Alice.

Alice’s key does not depend on the particular message or vice versa.
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Computational security

Joint probability distribution

These multiple sources of randomness give rise to a joint
probability distribution that assigns a well-defined probability to
each triple (m, k , z), where m is a message, k a key, and z is the
result of the random choices Eve makes during her computation.

The independence assumption asserts that

Pr[m, k, z] = Pr[m]× Pr[k]× Pr[z]

where

I Pr[m] is the probability that m is the chosen message,

I Pr[k] is the probability that k is the chosen key,

I Pr[z] is the probability that z represents Eve’s random choices.
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Computational security

Eve’s success probability

The joint distribution gives rise to an overall success probability for
Eve (once we decide on what it means for an attack to succeed).

We want Eve’s success probability to be “small”.

Here, “small” is measured relative to a security parameter s, which
you can think of as the key length.

Formally, we require that the success probability be a negligible
function of the security parameter s.
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Computational security

Negligible function

Definition
A function f is negligible if for every polynomial p(·) there exists
an N such that for all integers n > N it holds that f (n) < 1

p(n) .

This says that a negligible function grows more slowly than 1/p(n)
for any polynomial p(·).

For example, if Eve’s success probability is negligible, then her
probability of success is less than 1/s100 if the security parameter
is sufficiently large.

Caveat: In practice, we have no way to determine what value of s
is sufficiently large.
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Computational security

Computational security

Putting this all together, we get a general notion of computational
security.

Definition
A cryptosystem is computationally secure relative to a notion of
compromise if, for all probabilistic polynomial-time algorithms A,
when given as input the security parameter s and all of the
information available to Eve, the algorithm succeeds in
compromising the cryptosystem with success probability that is
negligible in s.
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Computational security

Practical security considerations

In practice, the important tradeoff is between the amount of time
that Alice and Bob are willing to spend to use the cryptosystem
versus what a determined adversary might be willing to spend to
break the system.

Asymptotic complexity results will not tell us how to set the
security parameter for a system, but they may inform us about how
much security improvement we can expect as the key length
increases.
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Appendix: Example of Perfect Secrecy of the

Basic Caesar Cipher
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Example: Caesar cipher on 1-letter messages

Simplify the Basic Casear cipher by restricting to a 3-letter
alphabet.

M = C = K = {0, 1, 2}
Ek(m) = (m + k) mod 3
Dk(m) = (m − k) mod 3.

Theorem
The simplified Caesar cipher achieves perfect secrecy.
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Joint message-key distribution

A priori message probabilities: m pm
0 1/2
1 1/3
2 1/6

Each key has probability 1/3.

Joint probability distribution:

m



k︷ ︸︸ ︷
0 1 2

0 1/6 1/6 1/6
1 1/9 1/9 1/9
2 1/18 1/18 1/18
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Conditional probability distribution

Pr[m = 1] = 1/3.
Eve sees c = 2.
She wishes to compute Pr[m = 1 | c = 2].

First, find the sample space Ω.
Points in Ω are triples (m, k , c), where c = Ek(m).:

(0,0,0)
·

(0,1,1)
·

(0,2,2)
•

(1,0,1)
·

(1,1,2)
•

(1,2,0)
·

(2,0,2)
•

(2,1,0)
·

(2,2,1)
·

Points for which c = 2 are shown in bold red.
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Proof of perfect secrecy

Pr[c = 2] is the sum of the
probabilities of the bold face
points, i.e., 1/6 + 1/9 + 1/18
= 6/18 = 1/3.

k︷ ︸︸ ︷
0 1 2

0 1/6 1/6 1/6
m

1 1/9 1/9 1/9
2 1/18 1/18 1/18

The only point for which m = 1 is (1, 1, 2) (the center point).
It’s probability is 1/9, so Pr[m = 1 ∧ c = 2] = 1/9.
By definition of conditional probability,

Pr[m = 1 | c = 2] =
Pr[m = 1 ∧ c = 2]

Pr[c = 2]
=

1/9

1/3
=

1

3
= Pr[m = 1].

Similarly, Pr[m = m0 | c = c0] = Pr[m = m0] for all m0 and c0.
Hence, simplified Caesar cipher is information-theoretically secure.
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Loss of perfection

A minor change
Suppose we reduce the key space to K = {0, 1}.
The a priori message distribution stays the same, but the joint
probability distribution changes as does the sample space.

m



k︷ ︸︸ ︷
0 1

0 1/4 1/4
1 1/6 1/6
2 1/12 1/12

(0,0,0)
·

(0,1,1)
·

(1,0,1)
·

(1,1,2)
•

(2,0,2)
•

(2,1,0)
·

Now, Pr[c = 2] = 1/6 + 1/12 = 3/12 = 1/4, and
Pr[m = 1 ∧ c = 2] = 1/6. Hence,

Pr[m = 1 | c = 2] =
1/6

1/4
=

2

3
6= 1

3
= Pr[m = 1].
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Loss of perfection

Perfect secrecy lost

The probability that m = 1 given c = 2 is double what it was.

Once Eve sees c = 2 there are only two possibilities for m:

1. m = 1 (and k = 1)

2. m = 2 (and k = 0).

No longer possible that m = 0!

Eve narrows the possibilities for m to the set M = {1, 2} ⊆ M.
Her probabilistic knowledge of m changes from the initial
distribution (1/2, 1/3, 1/6) to the new distribution (0, 2/3, 1/3).
She has learned at lot about m, even without finding it exactly.

A seemingly minor change turns a cryptosystem with perfect
secrecy into one that leaks a considerable amount of information!
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