
Outline Stream Ciphers Block Ciphers Padding Chaining Modes

CPSC 467: Cryptography and Security

Michael J. Fischer

Lecture 7
September 22, 2020

CPSC 467, Lecture 7, September 22, 2020 1/38

Outline Stream Ciphers Block Ciphers Padding Chaining Modes

Stream Ciphers

Block Ciphers

Padding
Bit padding
Byte padding

Chaining Modes
Block chaining modes
Extending chaining modes to bytes

CPSC 467, Lecture 7, September 22, 2020 2/38

Outline Stream Ciphers Block Ciphers Padding Chaining Modes

Stream Ciphers

CPSC 467, Lecture 7, September 22, 2020 3/38

Outline Stream Ciphers Block Ciphers Padding Chaining Modes

Letter-by-letter encryption

A stream cipher is any cryptosystem that operates in an online
fashion:

I The message is encrypted one letter at a time.

I After each message letter is read, one or more ciphertext
letters are emitted as output.

Polyalphabetic substitution ciphers such as Caesar, Vigenère,
Enigma machines, and even the one-time pad, are all examples of
stream ciphers.

CPSC 467, Lecture 7, September 22, 2020 4/38

Outline Stream Ciphers Block Ciphers Padding Chaining Modes

Structure of stream cipher

A stream cipher can be built from two components:

1. a cipher that is used to encrypt a given character;

2. a keystream generator that produces a different key to be
used for each successive letter.

A commonly-used cipher is the simple XOR cryptosystem, also
used in the one-time pad.

Rather than using a long random string for the keystream, we
instead use a pseudorandom keystream generated on the fly using
a state machine.

Like a one-time pad, a different master key (seed) must be used for
each message; otherwise the system is easily broken.

CPSC 467, Lecture 7, September 22, 2020 5/38

Outline Stream Ciphers Block Ciphers Padding Chaining Modes

Block Ciphers

CPSC 467, Lecture 7, September 22, 2020 6/38

Outline Stream Ciphers Block Ciphers Padding Chaining Modes

Encrypting several letters at a time

A block cipher is a cryptosystem that operates on a fixed-length
blocks of letters (or bits).

The Hill cipher presented in lecture 5 is an example of a block
cipher since it encrypts several letters at a time.

CPSC 467, Lecture 7, September 22, 2020 7/38

http://zoo.cs.yale.edu/classes/cs467/2020f/lectures/ln05.pdf

Outline Stream Ciphers Block Ciphers Padding Chaining Modes

Using a block cipher to encrypt arbitrary messages

Block ciphers are often not very useful by themselves since they
can only encrypt messages of the fixed block length.

We can extend block ciphers to handle arbitrarily long messages
much as we did for the Basic Caesar cipher.

Two important differences:

1. If the message length is not a multiple of the block size, we
need a way to fill out the last block in a way that allows Bob
to know where the message ends.

2. Encryption is no longer an online process since a block of
characters can’t be encrypted and sent out until a block’s
worth of characters have been read in.

CPSC 467, Lecture 7, September 22, 2020 8/38

Outline Stream Ciphers Block Ciphers Padding Chaining Modes

Using a block cipher with arbitrary-length messages

To encrypt an arbitrary message m:

1. Apply a padding rule to m to produce a padded message m′

whose length is a multiple of the block length b.

2. Split m′ into a sequence of blocks. Encrypt them using the
block cipher in some chaining mode to produce the ciphertext
c ′, another sequence of blocks.

To decrypt, the above must be reversed:

1. Decrypt c ′ to produce m′.

2. Remove the padding from m′ to recover the original
message m.

CPSC 467, Lecture 7, September 22, 2020 9/38

Outline Stream Ciphers Block Ciphers Padding Chaining Modes

Padding

CPSC 467, Lecture 7, September 22, 2020 10/38

Outline Stream Ciphers Block Ciphers Padding Chaining Modes

Padding

Block ciphers are designed to handle sequences of blocks.

To send a message m of arbitrary length, it must first be encoded
into a new message m′ that consists of a sequence of blocks.

m′ is then encrypted, transmitted, and decrypted.

After decrypting, m′ must be decoded to recover the original
message m.

A padding rule describes the encoding and decoding process.

CPSC 467, Lecture 7, September 22, 2020 11/38

Outline Stream Ciphers Block Ciphers Padding Chaining Modes

How to pad

An obvious padding rule is to append 0’s to the end of m until its
length is a multiple of the block length b.

Unfortunately, this can’t be properly decoded, since the receiver
does not know how many 0’s to discard from m′.

Condition: A padding rule must describe how much padding was
added.

Suggestions?

CPSC 467, Lecture 7, September 22, 2020 12/38

Outline Stream Ciphers Block Ciphers Padding Chaining Modes

Bit padding

Some easy padding rules

1. Pad with 0’s, then prepend a block containing the length of m.

Example: b = 8,m = 01011,m′ =

5 in binary︷ ︸︸ ︷
00000101 01011000.

Drawback: Must know the length of m before beginning.

2. Pad with 0’s, then append a block containing the length of m.

Example: b = 8,m = 01011,m′ = 01011000

5 in binary︷ ︸︸ ︷
00000101.

Drawback: Wasteful of space

3. Pad with a single 1 bit followed by 0’s.
Example: b = 8,m = 01011,m′ = 01011100.
Drawback: Need to count bits.

What happens if the length of m is already a multiple of b?

CPSC 467, Lecture 7, September 22, 2020 13/38

Outline Stream Ciphers Block Ciphers Padding Chaining Modes

Bit padding

Compact bit padding

Here’s a padding rule that is both space efficient and easy to
decode.

I Choose ` = dlog2 be. This is the number of bits needed to
represent (in binary) any number in the interval [0 . . . (b − 1)].

I Choose p as small as possible so that |m|+ p + ` is a multiple
of b.

I Pad m with p 0’s followed by a length ` binary representation
of p. Thus, the padded message is m · 0p · p, where p is the
binary representation of p.

To unpad, interpret the last ` bits of the message as a binary
number p; then discard a total of p + ` bits from the right end of
the message.

CPSC 467, Lecture 7, September 22, 2020 14/38

Outline Stream Ciphers Block Ciphers Padding Chaining Modes

Bit padding

Bit padding examples

1. b = 8,m = 01011,m′ = 01011

0︷︸︸︷
000 .

2. b = 8,m = 1110,m′ = 11100

1︷︸︸︷
001 .

3. b = 8,m = 111,m′ = 11100

2︷︸︸︷
010 .

4. b = 8,m = 010110,m′ = 01011000 00000

7︷︸︸︷
111 .

CPSC 467, Lecture 7, September 22, 2020 15/38

Outline Stream Ciphers Block Ciphers Padding Chaining Modes

Bit padding

Bit padding on 64-bit blocks

I At most 63 0’s ever need to be added, so a 6-bit length field
is sufficient.

I A message m is then padded to become m′ = m · 0p · p, where
p is the 6-bit binary representation of p.

I p is chosen as small as possible so that |m′| = |m|+ p + 6 is a
multiple of 64.

|m|︷ ︸︸ ︷
m

p︷ ︸︸ ︷
0. . . 0

6︷︸︸︷
p

CPSC 467, Lecture 7, September 22, 2020 16/38

Outline Stream Ciphers Block Ciphers Padding Chaining Modes

Byte padding

Block codes on byte strings

Often messages and blocks consist of a sequence of 8-bit bytes.

In that case, padding can be done by adding an integral number of
bytes to the message.

At least one byte is always added to avoid ambiguity.

CPSC 467, Lecture 7, September 22, 2020 17/38

Outline Stream Ciphers Block Ciphers Padding Chaining Modes

Byte padding

PKCS7 padding

PKCS7 #7 is a message syntax described in internet RFC 2315.

I Fill a partially filled last block having k “holes” with k bytes,
each having the value k when regarded as a binary number.

I If k = 0, an empty block is added before padding.

Example: Block length = 8 bytes.
m = “hello”.
m′ = 68 65 6C 6C 6F 03 03 03.

On decoding, if the last block of the message does not have this
form, then a decoding error is indicated.

Example: The last block cannot validly end in . . . 25 00 03.

What is the last block if k = 0?

CPSC 467, Lecture 7, September 22, 2020 18/38

Outline Stream Ciphers Block Ciphers Padding Chaining Modes

Byte padding

Possible information leakage from padding

Suppose Alice uses AES (block length 128) in ECB mode to send
129-bit messages.

Eve has a plaintext-ciphertext pair (m′, c ′) and intercepts a new
cipher text c for an unknown message m.

Because of padding, both c and c ′ are two blocks long. Let c2 and
c ′2 be the second blocks of each, respectively.

Then the last bit of m is the same as the last bit of m′ iff c2 = c ′2,
so Eve learns the last bit of m.

CPSC 467, Lecture 7, September 22, 2020 19/38

Outline Stream Ciphers Block Ciphers Padding Chaining Modes

Chaining Modes

CPSC 467, Lecture 7, September 22, 2020 20/38

Outline Stream Ciphers Block Ciphers Padding Chaining Modes

Block chaining modes

Encrypting sequences of blocks in ECB mode

Recall from lecture 5 that we used the Basic Caesar Cipher in ECB
mode in order to obtain the full Caesar cipher that can encrypt
arbitrary length messages.

A chaining mode tells how to encrypt a sequence of plaintext
blocks m1,m2, . . . ,mt to produce a corresponding sequence of
ciphertext blocks c1, c2, . . . , ct , and conversely, how to recover the
mi ’s given the ci ’s.

Electronic Code Book (ECB) mode encrypts/decrypts each block
separately using the same key k .

ci = Ek(mi), 1 ≤ i ≤ t.

CPSC 467, Lecture 7, September 22, 2020 21/38

http://zoo.cs.yale.edu/classes/cs467/2020f/lectures/ln05.pdf

Outline Stream Ciphers Block Ciphers Padding Chaining Modes

Block chaining modes

Removing cipher block dependence from ECB

ECB has the undesirable property that identical plaintext blocks
yield identical ciphertext blocks. For example, m3 = m8 iff c3 = c8.
This gives Eve possibly useful information about the meesage m.

Various extenstions to ECB fix this particular problem:

I Output Feedback (OFB) mode.

I Cipher Feedback (CFB) mode.

I Cipher Block Chaining (CBC) mode.

CPSC 467, Lecture 7, September 22, 2020 22/38

Outline Stream Ciphers Block Ciphers Padding Chaining Modes

Block chaining modes

Encrypting sequences of blocks in OFB mode

Output Feedback (OFB) mode repeatedly applies the block cipher
to a fixed initialization vector (IV) to produce a sequence of
subkeys. Each block is encrypted/decrypted by XORing with the
corresponding subkey.

k0 = Ek(IV)
ki = Ek(ki−1), ci = mi ⊕ ki , 1 ≤ i ≤ t.

It is likely that k3 6= k8, so it is also likely that c3 6= c8 even when
m3 = m8.

OFB is like the one-time pad where, given a single known plaintext
pair (m, c), m ⊕ c reveals the sequence of subkeys. Hence, a
master key should never be used for more than one message.

CPSC 467, Lecture 7, September 22, 2020 23/38

Outline Stream Ciphers Block Ciphers Padding Chaining Modes

Block chaining modes

Cipher Feedback (CFB)

Cipher Feedback (CFB) mode alleviates this problem by making
the sequence of subkeys dependent on the message as well as on
the master key k .

Namely, subkey ki is the encryption of ciphertext block ci−1 rather
than the encryption of the previous subkey ki−1 as is done with
OFB.

CPSC 467, Lecture 7, September 22, 2020 24/38

Outline Stream Ciphers Block Ciphers Padding Chaining Modes

Block chaining modes

A curious fact about OFB and CFB

In both OFB and CFB, Bob is able to decrypt without using the
block decryption function Dk , so it is not even necessary for Ek

tobe one-to-one.

This is because in both modes, Ek is only used for subkey
generation, and both encryption and decryption of a message use
the same sequence of subkeys.

For example, CFB encryption and decryption are almost identical.

I To encrypt, Alice computes ki = Ek(ci−1) and ci = mi ⊕ ki .

I To decrypt, Bob computes ki = Ek(ci−1) and mi = ci ⊕ ki .

c0 is a fixed initialization vector.

CPSC 467, Lecture 7, September 22, 2020 25/38

Outline Stream Ciphers Block Ciphers Padding Chaining Modes

Block chaining modes

OFB, CFB, and stream ciphers

Both OFB and CFB are closely related to stream ciphers.
In both cases, ci = mi ⊕ ki , where subkey ki is computed from the
master key and the data that came before stage i .

Like a one-time pad, OFB is insecure if the same key is ever
reused, for the sequence of ki ’s generated will be the same.
If m and m′ are encrypted using the same key k , then
m ⊕m′ = c ⊕ c ′.

CFB partially avoids this problem, for even if the same key k is
used for two different message sequences mi and m′i , it is only true
that mi ⊕m′i = ci ⊕ c ′i ⊕ Ek(ci−1)⊕ Ek(c ′i−1), and the dependency
on k does not drop out. However, the problem still exists when m
and m′ share a prefix.

CPSC 467, Lecture 7, September 22, 2020 26/38

Outline Stream Ciphers Block Ciphers Padding Chaining Modes

Block chaining modes

Cipher Block Chaining Mode (CBC)

Cipher Block Chaining Mode (CBC) prevents identical message
blocks from having identical corresponding ciphter blocks by
mixing in the previous ciphtertext block when encrypting the
current block.

I To encrypt, Alice applies Ek to the XOR of the current
plaintext block with the previous ciphertext block.
That is, ci = Ek(mi ⊕ ci−1).

I To decrypt, Bob computes mi = Dk(ci)⊕ ci−1.

To get started, we take c0 = IV, where IV is a fixed initialization
vector which we assume is publicly known.

CPSC 467, Lecture 7, September 22, 2020 27/38

Outline Stream Ciphers Block Ciphers Padding Chaining Modes

Block chaining modes

Propagating Cipher-Block Chaining Mode (PCBC)

Here is a more complicated chaining rule that nonetheless can be
deciphered.

I To encrypt, Alice XORs the current plaintext block, previous
plaintext block, and previous ciphertext block.
That is, ci = Ek(mi ⊕mi−1 ⊕ ci−1). Here, both m0 and c0 are
fixed initialization vectors.

I To decrypt, Bob computes mi = Dk(ci)⊕mi−1 ⊕ ci−1.

CPSC 467, Lecture 7, September 22, 2020 28/38

Outline Stream Ciphers Block Ciphers Padding Chaining Modes

Block chaining modes

Recovery from data corruption

In real applications, a ciphertext block might be damaged or lost.
An interesting property is how much plaintext is lost as a result.

I With ECB and OFB, if Bob receives a bad block ci , then he
cannot recover the corresponding mi , but all good ciphertext
blocks can be decrypted.

I With CBC and CFB, Bob needs good ci and ci−1 blocks in
order to decrypt mi . Therefore, a bad block ci renders both
mi and mi+1 unreadable.

I With PCBC, bad block ci renders mj unreadable for all j ≥ i .

Error-correcting codes applied to the ciphertext are often used in
practice since they minimize lost data and give better indications
of when irrecoverable data loss has occurred.

CPSC 467, Lecture 7, September 22, 2020 29/38

Outline Stream Ciphers Block Ciphers Padding Chaining Modes

Block chaining modes

Other modes

Other modes can easily be invented.

In all cases, ci is computed by some expression (which may depend
on i) built from Ek() and ⊕ applied to available information:

I ciphertext blocks c1, . . . , ci−1,

I message blocks m1, . . . ,mi ,

I any initialization vectors.

Any such equation that can be “solved” for mi (by possibly using
Dk() to invert Ek()) is a suitable chaining mode in the sense that
Alice can produce the ciphertext and Bob can decrypt it.

Of course, the resulting security properties depend heavily on the
particular expression chosen.

CPSC 467, Lecture 7, September 22, 2020 30/38

Outline Stream Ciphers Block Ciphers Padding Chaining Modes

Byte chaining modes

Stream ciphers from OFB and CFB block ciphers
OFB and CFB block modes can be turned into stream ciphers.

Both compute ci = mi ⊕ ki , where

I ki = Ek(ki−1) (for OFB);

I ki = Ek(ci−1) (for CFB).

Assume a block size of b bytes. Number the bytes in block mi as
mi ,0, . . . ,mi ,b−1 and similarly for ci and ki .

Then ci ,j = mi ,j ⊕ ki ,j , so each output byte ci ,j can be computed
before knowing mi ,j ′ for j ′ > j ; no need to wait for all of mi .

One must keep track of j . When j = b, the current block is
finished, i must be incremented, j must be reset to 0, and ki+1

must be computed.

CPSC 467, Lecture 7, September 22, 2020 31/38

Outline Stream Ciphers Block Ciphers Padding Chaining Modes

Byte chaining modes

Extended OFB and CFB modes

Simpler (for hardware implementation) and more uniform stream
ciphers result by also computing ki a byte at a time.

The idea: Use a shift register X to accumulate the feedback bits
from previous stages of encryption so that the full-sized blocks
needed by the block chaining method are available.

X is initialized to some public initialization vector.

CPSC 467, Lecture 7, September 22, 2020 32/38

Outline Stream Ciphers Block Ciphers Padding Chaining Modes

Byte chaining modes

Extended OFB and CFB notation

Assume block size b = 16 bytes.

Define two operations: L and R on blocks:

I L(x) is the leftmost byte of x ;

I R(x) is the rightmost b − 1 bytes of x .

CPSC 467, Lecture 7, September 22, 2020 33/38

Outline Stream Ciphers Block Ciphers Padding Chaining Modes

Byte chaining modes

Extended OFB and CFB similarities

The extended versions of OFB and CFB are very similar.

Both maintain a one-block shift register X .

The shift register value Xs at stage s depends only on c1, . . . , cs−1
(which are now single bytes) and the master key k .

At stage i , Alice

I computes Xs according to Extended OFB or Extended CFB
rules;

I computes byte key ks = L(Ek(Xs));

I encrypts message byte ms as cs = ms ⊕ ks .

Bob decrypts similarly.

CPSC 467, Lecture 7, September 22, 2020 34/38

Outline Stream Ciphers Block Ciphers Padding Chaining Modes

Byte chaining modes

Shift register rules

The two modes differ in how they update the shift register.

Extended OFB mode
Xs = R(Xs−1) · ks−1

Extended CFB mode
Xs = R(Xs−1) · cs−1

(‘·’ denotes concatenation.)

Summary:

I Extended OFB keeps the most recent b key bytes in X .

I Extended CFB keeps the most recent b ciphertext bytes in X ,

CPSC 467, Lecture 7, September 22, 2020 35/38

Outline Stream Ciphers Block Ciphers Padding Chaining Modes

Byte chaining modes

Comparison of extended OFB and CFB modes

The differences seem minor, but they have profound implications
on the resulting cryptosystem.

I In eOFB mode, Xs depends only on s and the master key k
(and the initialization vector IV), so loss of a ciphertext byte
causes loss of only the corresponding plaintext byte.

I In eCFB mode, loss of ciphertext byte cs causes ms and all
succeeding message bytes to become undecipherable until cs
is shifted off the end of X . Thus, b message bytes are lost.

CPSC 467, Lecture 7, September 22, 2020 36/38

Outline Stream Ciphers Block Ciphers Padding Chaining Modes

Byte chaining modes

Downside of extended OFB

The downside of eOFB is that security is lost if the same master
key is used twice for different messages. CFB does not suffer from
this problem since different messages lead to different ciphertexts
and hence different keystreams.

Nevertheless, eCFB has the undesirable property that the
keystreams are the same up to and including the first byte in which
the two message streams differ.

This enables Eve to determine the length of the common prefix of
the two message streams and also to determine the XOR of the
first bytes at which they differ.

CPSC 467, Lecture 7, September 22, 2020 37/38

Outline Stream Ciphers Block Ciphers Padding Chaining Modes

Byte chaining modes

Possible solution

Possible solution to both problems: Use a different initialization
vector for each message. Prefix the ciphertext with the
(unencrypted) IV so Bob can still decrypt.

CPSC 467, Lecture 7, September 22, 2020 38/38

	Outline
	Stream Ciphers
	Block Ciphers
	Padding
	Bit padding
	Byte padding

	Chaining Modes
	Block chaining modes
	Extending chaining modes to bytes

