
Outline Public-key RSA RSA Security Algorithms

CPSC 467: Cryptography and Security

Michael J. Fischer

Lecture 10
October 1, 2020

CPSC 467, Lecture 10, October 1, 2020 1/39

Outline Public-key RSA RSA Security Algorithms

Public-key Cryptography

RSA

RSA Security

Algorithms
Computing with Big Numbers
Fast Exponentiation Algorithms

CPSC 467, Lecture 10, October 1, 2020 2/39

Outline Public-key RSA RSA Security Algorithms

Public-key Cryptography

CPSC 467, Lecture 10, October 1, 2020 3/39

Outline Public-key RSA RSA Security Algorithms

Public-key cryptography

Classical cryptography uses a single key for both encryption and
decryption. This is also called a symmetric or 1-key cryptography.

There is no logical reason why the encryption and decryption keys
should be the same.

Allowing them to differ gives rise to asymmetric cryptography, also
known as public-key or 2-key cryptography.

CPSC 467, Lecture 10, October 1, 2020 4/39

Outline Public-key RSA RSA Security Algorithms

Asymmetric cryptosystems

An asymmetric cryptosystem has a pair k = (ke , kd) of related
keys, the encryption key ke and the decryption key kd .

Alice encrypts a message m by computing c = Eke (m).
Bob decrypts c by computing m = Dkd (c).

We sometimes write e and d as shorthand for ke and kd ,
respectively.

As always, the decryption function inverts the encryption function,
so m = Dd(Ee(m)).

CPSC 467, Lecture 10, October 1, 2020 5/39

Outline Public-key RSA RSA Security Algorithms

Security requirement

Should be hard for Eve to find m given c = Ee(m) and e.

I The system remains secure even if the encryption key e is
made public!

I e is said to be the public key and d the private key.

Reason to make e public.

I Anybody can send an encrypted message to Bob. Sandra
obtains Bob’s public key e and sends c = Ee(m) to Bob.

I Bob recovers m by computing Dd(c), using his private key d .

This greatly simplifies key management. No longer need a secure
channel between Alice and Bob for the initial key distribution
(which I have carefully avoided talking about so far).

CPSC 467, Lecture 10, October 1, 2020 6/39

Outline Public-key RSA RSA Security Algorithms

Man-in-the-middle attack against 2-key cryptosystem

An active adversary Mallory can carry out a nasty
man-in-the-middle attack.

I Mallory sends his own encryption key to Sandra when she
attempts to obtain Bob’s key.

I Not knowing she has been duped, Sandra encrypts her private
data using Mallory’s public key, so Mallory can read it (but
Bob cannot)!

I To keep from being discovered, Mallory intercepts each
message from Sandra to Bob, decrypts using his own
decryption key, re-encrypts using Bob’s public encryption key,
and sends it on to Bob. Bob, receiving a validly encrypted
message, is none the wiser.

CPSC 467, Lecture 10, October 1, 2020 7/39

Outline Public-key RSA RSA Security Algorithms

Passive attacks against a 2-key cryptosystem

Making the encryption key public also helps a passive attacker.

1. Chosen-plaintext attacks are always available since Eve can
generate as many plaintext-ciphertext pairs as she wishes
using the public encryption function Ee().

2. The public encryption function also gives Eve a foolproof way
to check validity of a potential decryption. Namely, Eve can
verify Dd(c) = m0 for some candidate message m0 by
checking that c = Ee(m0).

Redundancy in the set of meaningful messages is no longer
necessary for brute force attacks.

CPSC 467, Lecture 10, October 1, 2020 8/39

Outline Public-key RSA RSA Security Algorithms

Facts about asymmetric cryptosystems

Good asymmetric cryptosystems are much harder to design than
good symmetric cryptosystems.

All known asymmetric systems are orders of magnitude slower than
corresponding symmetric systems.

CPSC 467, Lecture 10, October 1, 2020 9/39

Outline Public-key RSA RSA Security Algorithms

Hybrid cryptosystems
Asymmetric and symmetric cryptosystems are often used together.
Let (E 2,D2) be a 2-key cryptosystem and (E 1,D1) be a 1-key
cryptosystem.

Here’s how Alice sends a secret message m to Bob.

I Alice generates a random session key k .

I Alice computes c1 = E 1
k (m) and c2 = E 2

e (k), where e is Bob’s
public key, and sends (c1, c2) to Bob.

I Bob computes k = D2
d(c2) using his private decryption key d

and then computes m = D1
k (c1).

This is much more efficient than simply sending E 2
e (m) in the

usual case that m is much longer than k.

Note that the 2-key system is used to encrypt random strings!

CPSC 467, Lecture 10, October 1, 2020 10/39

Outline Public-key RSA RSA Security Algorithms

RSA

CPSC 467, Lecture 10, October 1, 2020 11/39

Outline Public-key RSA RSA Security Algorithms

Overview of RSA

Probably the most commonly used asymmetric cryptosystem today
is RSA, named from the initials of its three inventors, Rivest,
Shamir, and Adelman.

Unlike the symmetric systems we have been talking about so far,
RSA is based not on substitution and transposition but on
arithmetic involving very large integers—numbers that are
hundreds or even thousands of bits long.

To understand why RSA works requires knowing a bit of number
theory. However, the basic ideas can be presented quite simply,
which I will do now.

CPSC 467, Lecture 10, October 1, 2020 12/39

Outline Public-key RSA RSA Security Algorithms

RSA spaces

The message space, ciphertext space, and key space for RSA is the
set of integers Zn = {0, . . . , n − 1} for some very large integer n.

For now, think of n as a number so large that its binary
representation is 1024 bits long.

Such a number is unimaginably big. It is bigger than 21023 ≈ 10308.

For comparison, the number of atoms in the observable universe1

is estimated to be “only” 1080.

1Wikipedia, https://en.wikipedia.org/wiki/Observable universe

CPSC 467, Lecture 10, October 1, 2020 13/39

https://en.wikipedia.org/wiki/Observable_universe

Outline Public-key RSA RSA Security Algorithms

Encoding bit strings by integers

To use RSA as a block cipher on bit strings, Alice must encode
each block to an integer m ∈ Zn, and Bob must decode m back to
a block.

Many such encodings are possible, but perhaps the simplest is to
prepend a “1” to the block x and regard the result as a binary
integer m.

To decode m to a block, write out m in binary and then delete the
initial “1” bit.

To ensure that m < n as required, we limit the length of our blocks
to 1022 bits.

CPSC 467, Lecture 10, October 1, 2020 14/39

Outline Public-key RSA RSA Security Algorithms

RSA key generation

Here’s how Bob generates an RSA key pair.

I Bob chooses two large distinct prime numbers p and q and
computes n = pq.
For security, p and q should be about the same length (when
written in binary).

I He computes two numbers e and d such that ed ≡ 1
(mod φ(n)), where φ(n) is Euler’s totient function.

I In the RSA case, φ(n) = (p − 1)(q − 1).

I The public key is the pair ke = (e, n). The private key is the
pair kd = (d , n). The primes p and q and the totient φ(n) are
no longer needed and should be discarded.

CPSC 467, Lecture 10, October 1, 2020 15/39

Outline Public-key RSA RSA Security Algorithms

RSA encryption and decryption

To encrypt, Alice computes c = me mod n. 2

To decrypt, Bob computes m = cd mod n.
Here, a mod n denotes the remainder when a is divided by n.

Decryption works because the conditions on e and d ensure that
med mod n = m. Hence,

m = (me mod n)d mod n. (1)

That’s all there is to it, once the keys have been found.

Most of the complexity in implementing RSA has to do with key
generation, which fortunately is done only infrequently.

2For now, assume all messages and ciphertexts are integers in Zn.

CPSC 467, Lecture 10, October 1, 2020 16/39

Outline Public-key RSA RSA Security Algorithms

RSA questions
You should already be asking yourself the following questions:
I How does one compute n, e, and d , and why are the given

conditions sufficient for equation (1) to be satisfied?
I Why is RSA believed to be secure?
I How can one implement RSA on a computer when most

computers only support arithmetic on 32-bit or 64-bit
integers, and how long does it take?

I How can one possibly compute me mod n for 1024 bit
numbers. me , before taking the remainder, has size roughly(

21024
)21024

= 21024×2
1024

= 22
10×21024 = 22

1034
.

This is a number that is roughly 21034 bits long! No computer
has enough memory to store that number, and no computer is
fast enough to compute it.

CPSC 467, Lecture 10, October 1, 2020 17/39

Outline Public-key RSA RSA Security Algorithms

Example: Small RSA

I p = 11, q = 13.

I n = p × q = 143.

I Z143 = {0, 1, 2, . . . , 141, 142}.
I φ(143) = (p − 1)(q − 1) = 10× 12 = 120.

I Z∗143 = Z143 −M11 −M13, where
M11 = {0, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121, 132},
M13 = {0, 13, 26, 39, 52, 65, 78, 91, 104, 117, 130}.

I |Z∗143| = |Z143| − |M11| − |M13|+ |M11 ∩M13|
= 143− 13− 11 + 1
= 120 = φ(143).

I e = 7, d = 103, ed = 721 ≡ 1 (mod 120).

CPSC 467, Lecture 10, October 1, 2020 18/39

Outline Public-key RSA RSA Security Algorithms

RSA Security

CPSC 467, Lecture 10, October 1, 2020 19/39

Outline Public-key RSA RSA Security Algorithms

Breaking RSA

An attacker of RSA is assumed to have the public key ke = (e, n),
a cyphertext c , and full knowledge of the RSA cryposystem. As
usual, the attacker’s goal is to find the corresponding plaintext m.

The public key ke allows an attacker to check the correctness of a
candidate decryption m′ by testing that Ee(m′) = c.

The public key also allows the attacker to generate as many chosen
plaintext pairs (mj , cj) as desired.

As always, it must be hard for the attacker to find the decryption
key kd = (d , n) or the system is completely broken. Because d is
easily computed given e and the factorization of n, it must also be
hard to factor n to find p and q.

CPSC 467, Lecture 10, October 1, 2020 20/39

Outline Public-key RSA RSA Security Algorithms

Factoring assumption

The factoring problem is to find a prime divisor of a composite
number n.

The factoring assumption is that there is no probabilistic
polynomial-time algorithm for solving the factoring problem, even
for the special case of an integer n that is known to be the product
of just two distinct primes.

The security of RSA depends on the factoring assumption. No
feasible factoring algorithm for such numbers is known, but there is
no proof that such an algorithm does not exist. If such an
algorithm is ever found, it can be used to break RSA.

CPSC 467, Lecture 10, October 1, 2020 21/39

Outline Public-key RSA RSA Security Algorithms

How big is big enough?

The security of RSA depends on n, p, q being sufficiently large.

What is sufficiently large? Nowadays, n is typically chosen to be
2048 or 3072 bits long. (See NIST Special Publication (SP)
800-57 Part 3, Rev. 1.)

The primes p and q, whose product is n, are generally chosen be
roughly the same length, so each will be about half as long as n.

CPSC 467, Lecture 10, October 1, 2020 22/39

https://doi.org/10.6028/NIST.SP.800-57pt3r1
https://doi.org/10.6028/NIST.SP.800-57pt3r1

Outline Public-key RSA RSA Security Algorithms

Algorithms

CPSC 467, Lecture 10, October 1, 2020 23/39

Outline Public-key RSA RSA Security Algorithms

Implementing RSA

To implement RSA, we need clever algorithms:

1. For computing with huge numbers that are hundreds or
thousands of bits long;

2. For fast exponentiation in order to compute the encryption
and decryption functions;

3. For finding inverses modn when they exist;

4. For finding large random prime numbers in order to generate
an RSA modulus n.

CPSC 467, Lecture 10, October 1, 2020 24/39

Outline Public-key RSA RSA Security Algorithms

Bignums

Arithmetic on big numbers

The arithmetic built into typical computers can handle only 32-bit
or 64-bit integers. Hence, all arithmetic on large integers must be
performed by software routines.

The straightforward algorithms for addition and multiplication have
time complexities O(N) and O(N2), respectively, where N is the
length (in bits) of the integers involved.

Asymptotically faster multiplication algorithms are known, but they
involve large constant factor overheads. It’s not clear whether they
are practical for numbers of the sizes used for cryptography.

CPSC 467, Lecture 10, October 1, 2020 25/39

Outline Public-key RSA RSA Security Algorithms

Bignums

Big number libraries

A lot of cleverness is possible in the careful implementation of even
the O(N2) multiplication algorithms, and a good implementation
can be many times faster in practice than a poor one. Big number
multiplication is also hard to get right because of many special
cases that must be handled correctly!

Most people sensibly choose to use big number libraries written by
others rather than write their own code.

Two such libraries that you can use in this course:

1. GMP (GNU Multiple Precision Arithmetic Library);

2. The big number routines in the openssl crypto library.

CPSC 467, Lecture 10, October 1, 2020 26/39

Outline Public-key RSA RSA Security Algorithms

Bignums

GMP

GMP provides a large number of highly-optimized function calls for
use with C and C++.

It is preinstalled on all of the Zoo nodes and supported by the open
source community. Type info gmp at a shell for documentation.

CPSC 467, Lecture 10, October 1, 2020 27/39

Outline Public-key RSA RSA Security Algorithms

Bignums

Openssl crypto package

OpenSSL is a cryptography toolkit implementing the Secure
Sockets Layer (SSL v2/v3) and Transport Layer Security (TLS v1)
network protocols and related cryptography standards required by
them.

It is widely used and pretty well debugged. The implementation
requires computation on big numbers. OpenSSL implements its
own big number routines which are contained in its crypto library.

Type man crypto for general information about the crypto library.
Details on the hundreds of individual functions are
summarized here. Big number man pages are located on the Zoo
in /usr/share/man/man3/ and begin with the “BN ” prefix.

CPSC 467, Lecture 10, October 1, 2020 28/39

https://www.openssl.org/docs/man1.1.0/crypto/crypto.html
https://www.openssl.org/docs/man1.1.0/crypto

Outline Public-key RSA RSA Security Algorithms

Exp

Modular exponentiation

The basic operation of RSA is modular exponentiation of big
numbers, i.e., computing me mod n for big numbers m, e, and n.

The obvious way to compute this would be to compute first
t = me and then compute t mod n.

This has two serious drawbacks.

CPSC 467, Lecture 10, October 1, 2020 29/39

Outline Public-key RSA RSA Security Algorithms

Exp

Computing me the conventional way is too slow

The simple iterative loop to compute me requires e multiplications,
or about 21024 operations in all. This computation would run
longer than the current age of the universe (which is estimated to
be 15 billion years).

Assuming one loop iteration could be done in one microsecond
(very optimistic seeing as each iteration requires computing a
product and remainder of big numbers), only about 30× 1012

iterations could be performed per year, and only about 450× 1021

iterations in the lifetime of the universe. But 450× 1021 ≈ 279, far
less than e − 1.

CPSC 467, Lecture 10, October 1, 2020 30/39

Outline Public-key RSA RSA Security Algorithms

Exp

The result of computing me is too big to write down.

The number me is too big to store! This number, when written in
binary, is about 1024 ∗ 21024 bits long, a number far larger than the
number of atoms in the universe (which is estimated to be only
around 1080 ≈ 2266).

CPSC 467, Lecture 10, October 1, 2020 31/39

Outline Public-key RSA RSA Security Algorithms

Exp

Controlling the size of intermediate results

The trick to get around the second problem is to do all arithmetic
modulo n, that is, reduce the result modulo n after each arithmetic
operation.

The product of two length ` numbers is only length 2` before
reduction mod n, so in this way, one never has to deal with
numbers longer than about 2048 bits.

Question to think about: Why is it correct to do this?

CPSC 467, Lecture 10, October 1, 2020 32/39

Outline Public-key RSA RSA Security Algorithms

Exp

Efficient exponentiation

The trick to avoiding the first problem is to use a more efficient
exponentiation algorithm based on repeated squaring.

For the special case of e = 2k , one computes me mod n as follows:

m0 = m
m1 = (m0 ∗m0) mod n
m2 = (m1 ∗m1) mod n

...
mk = (mk−1 ∗mk−1) mod n.

Clearly, mj = m2j mod n for all j .

CPSC 467, Lecture 10, October 1, 2020 33/39

Outline Public-key RSA RSA Security Algorithms

Exp

Combining the mj for general e

For values of e that are not powers of 2, me mod n can be
obtained as the product modulo n of certain mi ’s.

Express e in binary as e = (bsbs−1 . . . b2b1b0)2. Then e =
∑

i bi2
i ,

so
me = m

∑
i bi2

i
=
∏
i

mbi2
i

=
∏
i

(m2i)bi =
∏

i : bI=1

mi .

Since each bi ∈ {0, 1}, we include exactly those mi in the final
product for which bi = 1. Hence,

me mod n =
∏

i : bI=1

mi mod n.

CPSC 467, Lecture 10, October 1, 2020 34/39

Outline Public-key RSA RSA Security Algorithms

Exp

Towards greater efficiency

It is not necessary to perform this computation in two phases.

Rather, the two phases can be combined together, resulting in
slicker and simpler algorithms that do not require the explicit
storage of the mi ’s.

We give both a recursive and an iterative version. They’re both
based on the identities3

me =

{
(m2)be/2c if e is even;

(m2)be/2c ×m if e is odd;

3The floor be/2c is the greatest integer less than or equal to e/2.

CPSC 467, Lecture 10, October 1, 2020 35/39

Outline Public-key RSA RSA Security Algorithms

Exp

A recursive exponentiation algorithm

Here is a recursive version written in C notation, but it should be
understood that this C program only works for numbers smaller
than 216. To handle larger numbers requires the use of big number
functions.

/* computes m^e mod n recursively */

int modexp(int m, int e, int n) {

int r;

if (e == 0) return 1; /* m^0 = 1 */

r = modexp(m*m % n, e/2, n); /* r = (m^2)^(e/2) mod n */

if ((e&1) == 1) r = r*m % n; /* handle case of odd e */

return r;

}

Why doesn’t this code work for 32-bit integers?

CPSC 467, Lecture 10, October 1, 2020 36/39

Outline Public-key RSA RSA Security Algorithms

Exp

An iterative exponentiation algorithm

This same idea can be expressed iteratively to achieve even greater
efficiency.

/* computes m^e mod n iteratively */

int modexp(int m, int e, int n) {

int r = 1;

while (e > 0) {

if ((e&1) == 1) r = r*m % n;

e /= 2;

m = m*m % n;

}

return r;

}

CPSC 467, Lecture 10, October 1, 2020 37/39

Outline Public-key RSA RSA Security Algorithms

Exp

Correctness

The loop invariant is

e > 0 ∧ (me0
0 mod n = rme mod n) (2)

where m0 and e0 are the initial values of m and e, respectively.

Proof of correctness:

I It is easily checked that (2) holds at the start of each iteration.

I If the loop exits, then e = 0, so r mod n is the desired result.

I Termination is ensured since e gets reduced during each
iteration.

CPSC 467, Lecture 10, October 1, 2020 38/39

Outline Public-key RSA RSA Security Algorithms

Exp

A minor optimization
Note that the last iteration of the loop computes a new value of m
that is never used. A slight efficiency improvement results from
restructuring the code to eliminate this unnecessary computation.
Following is one way of doing so.

/* computes m^e mod n iteratively */

int modexp(int m, int e, int n) {

int r = ((e&1) == 1) ? m % n : 1;

e /= 2;

while (e > 0) {

m = m*m % n;

if ((e&1) == 1) r = r*m % n;

e /= 2;

}

return r;

}

CPSC 467, Lecture 10, October 1, 2020 39/39

	Outline
	Public-key Cryptography
	RSA
	RSA Security
	Algorithms
	Computing with Big Numbers
	Fast Exponentiation Algorithms

