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Recall: RSA cryptosystem in a nutshell

RSA Step Number Theory Needed

Choose two large primes p, q. Primality test

n = pq and φ(n) = (p − 1)(q − 1). Bignum arithmetic

Choose e, d so ed ≡ 1 (mod φ(n)). Diophantine equations

It follows that med ≡ m (mod n). Euler’s theorem

Ee(m) = c = me mod n
Dd(c) = m = cd mod n.

}
Fast modular exponentiation
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Zn, Z∗n, and products of two primes

We first need

I Some theory of Zn, the integers modulo n;

I Some theory of Z∗n, the integers in Zn that have no divisors in
common with n (except for 1);

I The Euler totient function φ(n) = |Z∗n|;
I Some properties of numbers n that are the product of two

distinct large primes. In particular, for such numbers n,
φ(n) = |Z∗n| = (p − 1)(q − 1).
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Division of Integers

Quotient and remainder

Theorem (Euclidean division)

Let a, b be integers and assume b > 0. There are unique integers q
(the quotient) and r (the remainder) such that a = bq + r and
0 ≤ r < b.

Write the quotient as a÷ b and the remainder as a mod b. Then

a = b × (a÷ b) + (a mod b).

Equivalently,
a mod b = a− b × (a÷ b).

a÷ b = ba/bc.1

1Here, / is ordinary real division and bxc, the floor of x , is the greatest
integer ≤ x . In C, / is used for both ÷ and / depending on its operand types.
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Division of Integers

Divides

b divides a (exactly), written b |a, in case a ≡ 0 (mod b) (or
equivalently, a = bq for some integer q).

Fact
If d |(a + b), then either d divides both a and b, or d divides
neither of them.

Proof.
Suppose d |(a + b) and d |a. Then a + b = dq1 and a = dq2 for
some integers q1 and q2. Substituting for a and solving for b, we
get

b = dq1 − dq2 = d(q1 − q2).

Hence, d |b.
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Division of Integers

The mod operator for negative numbers

When either a or b is negative, there is no consensus on the
definition of a mod b.

By our definition, a mod b is always in the range [0 . . . b − 1], even
when a is negative.

Example,

(−5) mod 3 = (−5)− 3× ((−5)÷ 3) = −5− 3× (−2) = 1.
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Division of Integers

The mod operator % in C

In the C programming language, the mod operator % is defined
differently, so (a % b) 6= (a mod b) when a is negative and b is
positive.

The C standard defines a % b to be the number r satisfying the
equation (a/b) ∗ b + r = a, so r = a− (a/b) ∗ b.

C also defines a/b to be the result of rounding the real number
a/b towards zero, so −5/3 = −1. Hence,

−5 % 3 = −5− (−5/3) ∗ 3 = −5 + 3 = −2.
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The mod relation

We just saw that mod is a binary operation on integers.

Mod is also used to denote a relationship on integers:

a ≡ b (mod n) iff n |(a− b).

That is, a and b have the same remainder when divided by n. An
immediate consequence of this definition is that

a ≡ b (mod n) iff (a mod n) = (b mod n).

Thus, the two notions of mod aren’t so different after all!

We sometimes write a ≡n b to mean a ≡ b (mod n).
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Mod is an equivalence relation

The two-place relationship ≡n is an equivalence relation.

The relation ≡n partitions the integers Z into n pairwise disjoint
infinite sets C0, . . . ,Cn−1, called residue classes, such that:

1. Every integer is in a unique residue class;

2. Integers x and y are equivalent (mod n) if and only if they
are members of the same residue class.

CPSC 467, Lecture 11, October 6, 2020 13/33



Outline Number Theory for RSA Modular Arithmetic Zn Z∗
n

Representatives for residue classes

The unique class Cj containing integer b is denoted by [b]≡n or
simply by [b].

Fact
[a] = [b] iff a ≡ b (mod n).

If x ∈ [b], then x is said to be a representative or name of the
residue class [b]. Obviously, b is a representative of [b].

For example, if n = 7, then [−11], [−4], [3], [10], [17] are all
names for the same residue class

C3 = {. . . ,−11,−4, 3, 10, 17, . . .}.
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Canonical names

The canonical or preferred name for the class [b] is the unique
representative x of [b] in the range 0 ≤ x ≤ n − 1.

For example, if n = 7, the canonical name for [10] is 3.

Why is the canonical name unique?
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Mod is a congruence relation

Definition
The relation ≡ is a congruence relation with respect to addition,
subtraction, and multiplication of integers if

1. ≡ is an equivalence relation, and

2. for each arithmetic operation � ∈ {+,−,×}, if a ≡ a′ and
b ≡ b′, then a� b ≡ a′ � b′.

The class containing the result of a� b depends only on the
classes to which a and b belong and not the particular
representatives chosen. Thus,

[a� b] = [a′ � b′].

CPSC 467, Lecture 11, October 6, 2020 16/33



Outline Number Theory for RSA Modular Arithmetic Zn Z∗
n

Operations on residue classes

We can extend our operations to work directly on the family of
residue classes (rather than on integers).

Let � be an arithmetic operation in {+,−,×}, and let [a] and [b]
be residue classes. Define [a]� [b] = [a� b].

If you’ve followed everything so far, it should be no surprise that
the canonical name for [a� b] is (a� b) mod n !
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Multiplicative Subgroup of Zn
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GCD

Greatest common divisor

Definition
The greatest common divisor of two integers a and b, written
gcd(a, b), is the largest integer d such that d |a and d |b.

gcd(a, b) is always defined unless a = b = 0 since 1 is a divisor of
every integer, and the divisor of a non-zero number cannot be
larger (in absolute value) than the number itself.

Question: Why isn’t gcd(0, 0) well defined?
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GCD

Computing the GCD

gcd(a, b) is easily computed if a and b are given in factored form.

Namely, let pi be the i th prime. Write a =
∏

peii and b =
∏

p fi
i .

Then
gcd(a, b) =

∏
p
min(ei ,fi )
i .

Example: 168 = 23 · 3 · 7 and 450 = 2 · 32 · 52, so
gcd(168, 450) = 2 · 3 = 6.

However, factoring is believed to be a hard problem, and no
polynomial-time factorization algorithm is currently known. (If it
were easy, then Eve could use it to break RSA, and RSA would be
of no interest as a cryptosystem.)
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GCD

Euclidean algorithm

Fortunately, gcd(a, b) can be computed efficiently without the
need to factor a and b using the famous Euclidean algorithm.

Euclid’s algorithm is remarkable, not only because it was
discovered a very long time ago, but also because it works without
knowing the factorization of a and b.
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GCD

Euclidean identities

The Euclidean algorithm relies on several identities satisfied by the
gcd function. In the following, assume a > 0 and a ≥ b ≥ 0:

gcd(a, b) = gcd(b, a) (1)

gcd(a, 0) = a (2)

gcd(a, b) = gcd(a− b, b) (3)

Identity 1 is obvious from the definition of gcd. Identity 2 follows
from the fact that every positive integer divides 0. Identity 3
follows from the basic fact relating divides and addition on slide 8.
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GCD

Computing GCD without factoring

The Euclidean identities allow the problem of computing gcd(a, b)
to be reduced to the problem of computing gcd(a− b, b).

The new problem is “smaller” as long as b > 0.

The size of the problem gcd(a, b) is |a|+ |b|, the sum of the
absolute value of the two arguments.
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GCD

An easy recursive GCD algorithm

int gcd(int a, int b)

{

if ( a < b ) return gcd(b, a);

else if ( b == 0 ) return a;

else return gcd(a-b, b);

}

This algorithm is not very efficient, as you will quickly discover if
you attempt to use it, say, to compute gcd(1000000, 2).
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GCD

Repeated subtraction

Repeatedly applying identity (3) to the pair (a, b) until it can’t be
applied any more produces the sequence of pairs

(a, b), (a− b, b), (a− 2b, b), . . . , (a− qb, b).

The sequence stops when a− qb < b.

How many times you can subtract b from a while remaining
non-negative?
Answer: The quotient q = ba/bc.
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GCD

Using division in place of repeated subtractions

The amout a− qb that is left after q subtractions is just the
remainder a mod b.

Hence, one can go directly from the pair (a, b) to the pair
(a mod b, b).

This proves the identity

gcd(a, b) = gcd(a mod b, b). (4)
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GCD

Full Euclidean algorithm
Recall the inefficient GCD algorithm.
int gcd(int a, int b) {

if ( a < b ) return gcd(b, a);

else if ( b == 0 ) return a;

else return gcd(a-b, b);

}

The following algorithm is exponentially faster.
int gcd(int a, int b) {

if ( b == 0 ) return a;

else return gcd(b, a%b);

}

Principal change: Replace gcd(a-b,b) with gcd(b, a%b).
Besides collapsing repeated subtractions, we have a ≥ b for all but
the top-level call on gcd(a, b). This eliminates roughly half of the
remaining recursive calls.
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GCD

Complexity of GCD

The new algorithm requires at most in O(n) stages, where n is the
sum of the lengths of a and b when written in binary notation, and
each stage involves at most one remainder computation.

The following iterative version eliminates the stack overhead:

int gcd(int a, int b) {

int aa;

while (b > 0) {

aa = a;

a = b;

b = aa % b;

}

return a;

}
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Relatively prime numbers, Z∗
n , and φ(n)

Relatively prime numbers

Two integers a and b are relatively prime if they have no common
prime factors.

Equivalently, a and b are relatively prime if gcd(a, b) = 1.

Let Z∗n be the set of integers in Zn that are relatively prime to n, so

Z∗n = {a ∈ Zn | gcd(a, n) = 1}.

Example:

Z∗21 = {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}.
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Relatively prime numbers, Z∗
n , and φ(n)

Euler’s totient function φ(n)

φ(n) is the cardinality (number of elements) of Z∗n, i.e.,

φ(n) = |Z∗n|.

Example: φ(21) = |Z∗21| = 12.

Go back and count them!
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Relatively prime numbers, Z∗
n , and φ(n)

Properties of φ(n)

1. If p is prime, then
φ(p) = p − 1.

2. More generally, if p is prime and k ≥ 1, then

φ(pk) = pk − pk−1 = (p − 1)pk−1.

3. If gcd(m, n) = 1, then

φ(mn) = φ(m)φ(n).
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Relatively prime numbers, Z∗
n , and φ(n)

Example: φ(126)

Can compute φ(n) for all n ≥ 1 given the factorization of n.

φ(126) = φ(2) · φ(32) · φ(7)

= (2− 1) · (3− 1)(32−1) · (7− 1)

= 1 · 2 · 3 · 6 = 36.

The 36 elements of Z∗126 are:

1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 53, 55,
59, 61, 65, 67, 71, 73, 79, 83, 85, 89, 95, 97, 101, 103,
107, 109, 113, 115, 121, 125.

CPSC 467, Lecture 11, October 6, 2020 32/33



Outline Number Theory for RSA Modular Arithmetic Zn Z∗
n

Relatively prime numbers, Z∗
n , and φ(n)

A formula for φ(n)

Here is an explicit formula for φ(n).

Theorem
Write n in factored form, so n = pe11 · · · p

ek
k , where p1, . . . , pk are

distinct primes and e1, . . . , ek are positive integers.2 Then

φ(n) = (p1 − 1) · pe1−11 · · · (pk − 1) · pek−1k .

Important: For the product of distinct primes p and q,

φ(pq) = (p − 1)(q − 1).

2By the fundamental theorem of arithmetic, every integer can be written
uniquely in this way up to the ordering of the factors.
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