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Recall: RSA cryptosystem in a nutshell

RSA Step Number Theory Needed

Choose two large primes p, g. Primality test
n=pqand ¢(n) =(p—1)(g —1). Bignum arithmetic
Choose e,d so ed =1 (mod ¢(n)). Diophantine equations
It follows that m*® = m (mod n).  Euler’s theorem

Ec(m) =c=m® mod n }

Fast modular exponentiation
Dy(c) = m = c mod n. :
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Z, Z7, and products of two primes

We first need
» Some theory of Z,, the integers modulo n;
» Some theory of Z}, the integers in Z, that have no divisors in
common with n (except for 1);
» The Euler totient function ¢(n) = |Z}];

» Some properties of numbers n that are the product of two
distinct large primes. In particular, for such numbers n,

¢(n) =125/ = (p—1)(g - 1).
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Quotient and remainder

Theorem (Euclidean division)

Let a, b be integers and assume b > 0. There are unique integers q
(the quotient) and r (the remainder) such that a = bq + r and
0<r<hb.

Write the quotient as a +— b and the remainder as a mod b. Then
a=bx(a+b)+ (amod b).

Equivalently,
amod b=a—bx (a=+b).

a+b=|a/b|}

"Here, / is ordinary real division and | x|, the floor of x, is the greatest
integer < x. In C, / is used for both + and / depending on its operand types.
: :
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Divides

b divides a (exactly), written b|a, in case a=0 (mod b) (or
equivalently, a = bq for some integer q).

Fact
If d|(a+ b), then either d divides both a and b, or d divides
neither of them.

Proof.
Suppose d|(a+ b) and d|a. Then a+ b= dq; and a = dg» for
some integers g; and g». Substituting for a and solving for b, we
get

b=dq —dg = d(q1 — q2).

Hence, d|b. O
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Division of Integers
;

The mod operator for negative numbers

When either a or b is negative, there is no consensus on the
definition of a mod b.

By our definition, a mod b is always in the range [0...b — 1], even
when a is negative.

Example,

(—5) mod 3 = (—5) — 3 x ((—5) +3) = —5— 3 x (—2) = 1.
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The mod operator % in C

In the C programming language, the mod operator % is defined
differently, so (a% b) # (a mod b) when a is negative and b is
positive.

The C standard defines a % b to be the number r satisfying the
equation (a/b)* b+ r =a, sor=a— (a/b)*b.

C also defines a/b to be the result of rounding the real number
a/b towards zero, so —5/3 = —1. Hence,

—5%3=-5—(-5/3)%3=-5+3=-2.
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The mod relation

We just saw that mod is a binary operation on integers.
Mod is also used to denote a relationship on integers:
a=b (mod n) iff n|(a—b).

That is, a and b have the same remainder when divided by n. An
immediate consequence of this definition is that

a=b (mod n) iff (amodn)=(bmod n).

Thus, the two notions of mod aren't so different after all!

We sometimes write a =, b to mean a = b (mod n).
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Mod is an equivalence relation

The two-place relationship =, is an equivalence relation.
The relation =, partitions the integers Z into n pairwise disjoint
infinite sets Cy, ..., C,_1, called residue classes, such that:

1. Every integer is in a unique residue class;

2. Integers x and y are equivalent (mod n) if and only if they
are members of the same residue class.
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Representatives for residue classes
The unique class C; containing integer b is denoted by [b]=, or
simply by [b].
Fact
[a] = [b] iffa= b (mod n).

If x € [b], then x is said to be a representative or name of the
residue class [b]. Obviously, b is a representative of [b].
For example, if n =7, then [—11], [—4], [3], [10], [17] are all

names for the same residue class

CG=1{..,-11,-4,3,10,17,...}.

: :
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Canonical names

The canonical or preferred name for the class [b] is the unique
representative x of [b] in the range 0 < x < n—1.

For example, if n =7, the canonical name for [10] is 3.

Why is the canonical name unique?

:
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Mod is a congruence relation

Definition
The relation = is a congruence relation with respect to addition,
subtraction, and multiplication of integers if

1. = is an equivalence relation, and

2. for each arithmetic operation ® € {+,—, x}, if a= a4’ and
b="b,thenacob=adob.

The class containing the result of a ® b depends only on the
classes to which a and b belong and not the particular
representatives chosen. Thus,

[a® bl =[d ®b].

: :
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Operations on residue classes

We can extend our operations to work directly on the family of
residue classes (rather than on integers).

Let ® be an arithmetic operation in {4, —, x}, and let [a] and [b]
be residue classes. Define [a] ® [b] = [a ® b].

If you've followed everything so far, it should be no surprise that
the canonical name for [a ® b] is (a ® b) mod n!
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Greatest common divisor

Definition
The greatest common divisor of two integers a and b, written
gcd(a, b), is the largest integer d such that d|a and d|b.

gcd(a, b) is always defined unless a = b = 0 since 1 is a divisor of
every integer, and the divisor of a non-zero number cannot be
larger (in absolute value) than the number itself.

Question: Why isn't gcd(0, 0) well defined?
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Computing the GCD

gcd(a, b) is easily computed if a and b are given in factored form.

Namely, let p; be the i*® prime. Write a =[] p{" and b = Hp,ﬁ.

Then
ng a, b H mm(e,,f)

Example: 168 =23.3-7 and 450 =2-3%.52, so
gcd(168,450) =2 -3 = 6.

However, factoring is believed to be a hard problem, and no
polynomial-time factorization algorithm is currently known. (If it
were easy, then Eve could use it to break RSA, and RSA would be
of no interest as a cryptosystem.)

: :
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Euclidean algorithm

Fortunately, gcd(a, b) can be computed efficiently without the
need to factor a and b using the famous Euclidean algorithm.

Euclid’s algorithm is remarkable, not only because it was
discovered a very long time ago, but also because it works without
knowing the factorization of a and b.
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Euclidean identities

The Euclidean algorithm relies on several identities satisfied by the
gcd function. In the following, assume a > 0and a> b > 0:

ged(a,b) = ged(b, a) (1)
ged(a,0) = a (2)
ged(a, b) = ged(a— b, b) (3)

Identity 1 is obvious from the definition of gcd. Identity 2 follows
from the fact that every positive integer divides 0. ldentity 3
follows from the basic fact relating divides and addition on slide 8.
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Computing GCD without factoring

The Euclidean identities allow the problem of computing gcd(a, b)
to be reduced to the problem of computing gcd(a — b, b).

The new problem is “smaller” as long as b > 0.

The size of the problem gcd(a, b) is |a| + |b]|, the sum of the
absolute value of the two arguments.
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An easy recursive GCD algorithm

int gcd(int a, int b)

{
if ( a < b ) return gcd(b, a);
else if ( b == 0 ) return a;
else return gcd(a-b, b);

}

This algorithm is not very efficient, as you will quickly discover if
you attempt to use it, say, to compute gcd(1000000, 2).

:
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Repeated subtraction

Repeatedly applying identity (3) to the pair (a, b) until it can't be
applied any more produces the sequence of pairs

(a,b),(a— b,b),(a—2b,b),...,(a— gb,b).
The sequence stops when a — gb < b.

How many times you can subtract b from a while remaining
non-negative?
Answer: The quotient g = [a/b].
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Using division in place of repeated subtractions

The amout a — gb that is left after g subtractions is just the
remainder a mod b.

Hence, one can go directly from the pair (a, b) to the pair
(a mod b, b).

This proves the identity

ged(a, b) = ged(a mod b, b). (4)
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Full Euclidean algorithm

Recall the inefficient GCD algorithm.
int gcd(int a, int b) {
if ( a < b ) return gcd(b, a);
else if ( b == 0 ) return a;
else return gcd(a-b, b);
}
The following algorithm is exponentially faster.
int ged(int a, int b) {
if ( b == 0 ) return a;
else return gcd(b, a%b);
}
Principal change: Replace gcd(a-b,b) with gcd(b, a¥%b).
Besides collapsing repeated subtractions, we have a > b for all but
the top-level call on gcd(a, b). This eliminates roughly half of the
remaining recursive calls.
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Complexity of GCD

The new algorithm requires at most in O(n) stages, where n is the
sum of the lengths of a and b when written in binary notation, and
each stage involves at most one remainder computation.

The following iterative version eliminates the stack overhead:

int ged(int a, int b) {
int aa;
while (b > 0) {

return a;

3
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Relatively prime numbers, Z:, and ¢(n)

Relatively prime numbers

Two integers a and b are relatively prime if they have no common
prime factors.

Equivalently, a and b are relatively prime if gcd(a, b) = 1.

Let Z} be the set of integers in Z, that are relatively prime to n, so
Z; ={acZ,|gcd(a,n) =1}

Example:

5, = {1,2,4,5,8,10,11,13,16, 17, 19, 20}.
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Euler's totient function ¢(n)

¢(n) is the cardinality (number of elements) of Z7, i.e.,

¢(n) = |Z5].
Example: ¢(21) = |Z3;| = 12.

Go back and count them!
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Properties of ¢(n)

1. If p is prime, then
o(p)=p—1.
2. More generally, if p is prime and k > 1, then
o(p*) = p* —pF 1= (p-1)p* .
3. If ged(m, n) =1, then
¢(mn) = ¢(m)é(n).
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Example: ¢(126)

Can compute ¢(n) for all n > 1 given the factorization of n.

$(126) = ¢(2) 6(3%) - 4(7)
(2-1)-3-1E)-(7-1)
1.2-3.6=36.

The 36 elements of Z7,4 are:

1, 5,11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 53, 55,
59, 61, 65, 67, 71, 73, 79, 83, 85, 89, 95, 97, 101, 103,
107, 109, 113, 115, 121, 125.
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A formula for ¢(n)

Here is an explicit formula for ¢(n).

Theorem
Write n in factored form, so n = pf* - - - pi", where p1,...,px are
distinct primes and ey, ..., e are positive integers.> Then

6(n) = (pr — 1) - P (pe — 1) - pi ™.
Important: For the product of distinct primes p and q,

o(pq) = (p—1)(qg - 1).

2By the fundamental theorem of arithmetic, every integer can be written
uniquely in this way up to the ordering of the factors.
: :
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