Outline 0	Number Theory for RSA	Modular Arithmetic	Z _n 0000000	Z [*] 000000000000000000000000000000000000

CPSC 467: Cryptography and Security

Michael J. Fischer

Lecture 11 October 6, 2020

CPSC 467, Lecture 11, October 6, 2020

Outline •	Number Theory for RSA	Modular Arithmetic	Z _n 0000000	Z [*] 000000000000000000000000000000000000

Number Theory for RSA

Modular Arithmetic Division of Integers

Integers Modulo n

Multiplicative Subgroup of Z_n

Greatest common divisor Multiplicative subgroup of Z_n

Outline	Number Theory for RSA	Modular Arithmetic	Z _n	Z [*]
0	●0		0000000	000000000000000000000000000000000000

Number Theory for RSA

Outline	Number Theory for RSA	Modular Arithmetic	Z <i>n</i>	Z [*]
0	0.	000000	0000000	00000000000000000

Recall: RSA cryptosystem in a nutshell

RSA Step	Number Theory Needed
Choose two large primes <i>p</i> , <i>q</i> .	Primality test
$n=pq$ and $\phi(n)=(p-1)(q-1).$	Bignum arithmetic
Choose e, d so $ed \equiv 1 \pmod{\phi(n)}$.	Diophantine equations
It follows that $m^{ed} \equiv m \pmod{n}$.	Euler's theorem
$E_e(m) = c = m^e \mod n$ $D_d(c) = m = c^d \mod n.$	Fast modular exponentiation

Outline 0	Number Theory for RSA	Modular Arithmetic	Z _n 0000000	Z [*] 000000000000000000000000000000000000

Modular Arithmetic

Outline 0	Number Theory for RSA	Modular Arithmetic	Z _n 0000000	Z [*] 000000000000000000000000000000000000

Z_n , Z_n^* , and products of two primes

We first need

- Some theory of **Z**_n, the integers modulo n;
- Some theory of Z^{*}_n, the integers in Z_n that have no divisors in common with n (except for 1);
- The Euler *totient* function $\phi(n) = |\mathbf{Z}_n^*|$;
- Some properties of numbers *n* that are the product of two distinct large primes. In particular, for such numbers *n*, φ(n) = |**Z**^{*}_n| = (p − 1)(q − 1).

Outline 0	Number Theory for RSA	Modular Arithmetic	Z _n 0000000	Z [*] 000000000000000000000000000000000000
Division of I	ntegers			

Quotient and remainder

Theorem (Euclidean division)

Let a, b be integers and assume b > 0. There are unique integers q (the quotient) and r (the remainder) such that a = bq + r and $0 \le r < b$.

Write the quotient as $a \div b$ and the remainder as $a \mod b$. Then

 $a = b \times (a \div b) + (a \mod b).$

Equivalently,

 $a \mod b = a - b \times (a \div b).$ $a \div b = \lfloor a/b \rfloor.^1$

¹Here, / is ordinary real division and $\lfloor x \rfloor$, the *floor* of x, is the greatest integer $\leq x$. In C, / is used for both \div and / depending on its operand types.

Outline	Number Theory for RSA	Modular Arithmetic	Z _n	Z [*]
0	00		0000000	000000000000000000000000000000000000
Division of Integ	gers			

Divides

b divides *a* (exactly), written $b \mid a$, in case $a \equiv 0 \pmod{b}$ (or equivalently, a = bq for some integer *q*).

Fact

If d|(a + b), then either d divides both a and b, or d divides neither of them.

Proof.

Suppose d | (a + b) and d | a. Then $a + b = dq_1$ and $a = dq_2$ for some integers q_1 and q_2 . Substituting for a and solving for b, we get

$$b = dq_1 - dq_2 = d(q_1 - q_2).$$

Hence, $d \mid b$.

Outline	Number Theory for RSA	Modular Arithmetic	Z <i>n</i>	Z [*]
0	00	○○○○●○	0000000	000000000000000000000000000000000000
Division of Ir	itegers			

The mod operator for negative numbers

When either a or b is negative, there is no consensus on the definition of $a \mod b$.

By our definition, $a \mod b$ is always in the range $[0 \dots b - 1]$, even when a is negative.

Example,

$$(-5) \mod 3 = (-5) - 3 \times ((-5) \div 3) = -5 - 3 \times (-2) = 1.$$

Outline	Number Theory for RSA	Modular Arithmetic	Z _n	Z [*]
0	00	○○○○○●	0000000	000000000000000000000000000000000000
Division of In	itegers			

The mod operator % in C

In the C programming language, the mod operator % is defined differently, so $(a \% b) \neq (a \mod b)$ when a is negative and b is positive.

The C standard defines a % b to be the number r satisfying the equation (a/b) * b + r = a, so r = a - (a/b) * b.

C also defines a/b to be the result of rounding the real number a/b towards zero, so -5/3 = -1. Hence,

$$-5 \% 3 = -5 - (-5/3) \ast 3 = -5 + 3 = -2.$$

Outline 0	Number Theory for RSA	Modular Arithmetic	Z _n ●○○○○○○	Z [*] 000000000000000000000000000000000000

Integers Modulo n

Outline 0	Number Theory for RSA	Modular Arithmetic	Z _n ○●○○○○○	Z [*] 000000000000000000000000000000000000

The mod relation

We just saw that mod is a binary operation on integers.

Mod is also used to denote a relationship on integers:

 $a \equiv b \pmod{n}$ iff $n \mid (a - b)$.

That is, a and b have the same remainder when divided by n. An immediate consequence of this definition is that

 $a \equiv b \pmod{n}$ iff $(a \mod n) = (b \mod n)$.

Thus, the two notions of mod aren't so different after all!

We sometimes write $a \equiv_n b$ to mean $a \equiv b \pmod{n}$.

Outline 0	Number Theory for RSA	Modular Arithmetic	Z _n ○○●○○○○	Z [*] 000000000000000000000000000000000000
1				

Mod is an equivalence relation

The two-place relationship \equiv_n is an *equivalence relation*.

The relation \equiv_n partitions the integers **Z** into *n* pairwise disjoint infinite sets C_0, \ldots, C_{n-1} , called *residue classes*, such that:

- 1. Every integer is in a unique residue class;
- 2. Integers x and y are equivalent (mod n) if and only if they are members of the same residue class.

Outline 0	Number Theory for RSA	Modular Arithmetic	Z _n ○○○●○○○○	Z [*] 000000000000000000000000000000000000

Representatives for residue classes

The unique class C_j containing integer b is denoted by $[b]_{\equiv_n}$ or simply by [b].

Fact

$$[a] = [b]$$
 iff $a \equiv b \pmod{n}$.

If $x \in [b]$, then x is said to be a *representative* or *name* of the residue class [b]. Obviously, b is a representative of [b].

For example, if n = 7, then [-11], [-4], [3], [10], [17] are all names for the same residue class

$$C_3 = \{\ldots, -11, -4, 3, 10, 17, \ldots\}.$$

Outline 0	Number Theory for RSA	Modular Arithmetic	Z _n ○○○○●○○	Z [*] 000000000000000000000000000000000000

Canonical names

The *canonical* or preferred name for the class [b] is the unique representative x of [b] in the range $0 \le x \le n-1$.

For example, if n = 7, the canonical name for [10] is 3.

Why is the canonical name unique?

Outline 0	Number Theory for RSA	Modular Arithmetic	Z _n ○○○○○●○	Z [*] 000000000000000000000000000000000000
/				

Mod is a congruence relation

Definition

The relation \equiv is a *congruence relation* with respect to addition, subtraction, and multiplication of integers if

- $1.\ \equiv$ is an equivalence relation, and
- 2. for each arithmetic operation $\odot \in \{+, -, \times\}$, if $a \equiv a'$ and $b \equiv b'$, then $a \odot b \equiv a' \odot b'$.

The class containing the result of $a \odot b$ depends only on the classes to which a and b belong and not the particular representatives chosen. Thus,

$$[a \odot b] = [a' \odot b'].$$

Outline 0	Number Theory for RSA	Modular Arithmetic	Z _n ○○○○○○●	Z [*] 000000000000000000000000000000000000

Operations on residue classes

We can extend our operations to work directly on the family of residue classes (rather than on integers).

Let \odot be an arithmetic operation in $\{+, -, \times\}$, and let [a] and [b] be residue classes. Define $[a] \odot [b] = [a \odot b]$.

If you've followed everything so far, it should be no surprise that the canonical name for $[a \odot b]$ is $(a \odot b) \mod n!$

Outline 0	Number Theory for RSA	Modular Arithmetic	Z _n 0000000	Z [*] ●○○○○○○○○○○○○○○○

Multiplicative Subgroup of Z_n

Outline	Number Theory for RSA	Modular Arithmetic	Z <i>n</i>	Z [*]
0	00		0000000	○●○○○○○○○○○○○○○
GCD				

Greatest common divisor

Definition

The greatest common divisor of two integers a and b, written gcd(a, b), is the largest integer d such that $d \mid a$ and $d \mid b$.

gcd(a, b) is always defined unless a = b = 0 since 1 is a divisor of every integer, and the divisor of a non-zero number cannot be larger (in absolute value) than the number itself.

Question: Why isn't gcd(0,0) well defined?

Outline	Number Theory for RSA	Modular Arithmetic	Z <i>n</i>	Z [*]
0	00		0000000	○●●○○○○○○○○○○○○
GCD				

Computing the GCD

gcd(a, b) is easily computed if a and b are given in factored form. Namely, let p_i be the ith prime. Write $a = \prod p_i^{e_i}$ and $b = \prod p_i^{f_i}$. Then

 $gcd(a, b) = \prod p_i^{\min(e_i, f_i)}.$

Example: $168 = 2^3 \cdot 3 \cdot 7$ and $450 = 2 \cdot 3^2 \cdot 5^2$, so $gcd(168, 450) = 2 \cdot 3 = 6$.

However, factoring is believed to be a hard problem, and no polynomial-time factorization algorithm is currently known. (If it were easy, then Eve could use it to break RSA, and RSA would be of no interest as a cryptosystem.)

Outline 0	Number Theory for RSA	Modular Arithmetic	Z _n 0000000	Z [*] ○○○●○○○○○○○○○○○
GCD				

Euclidean algorithm

Fortunately, gcd(a, b) can be computed efficiently without the need to factor *a* and *b* using the famous *Euclidean algorithm*.

Euclid's algorithm is remarkable, not only because it was discovered a very long time ago, but also because it works without knowing the factorization of a and b.

Outline 0	Number Theory for RSA	Modular Arithmetic	Z _n 0000000	Z [*] ○○○○●○○○○○○○○○○○
GCD				

Euclidean identities

The Euclidean algorithm relies on several identities satisfied by the gcd function. In the following, assume a > 0 and $a \ge b \ge 0$:

$$gcd(a,b) = gcd(b,a)$$
 (1)

$$gcd(a,0) = a \tag{2}$$

$$gcd(a,b) = gcd(a-b,b)$$
 (3)

Identity 1 is obvious from the definition of gcd. Identity 2 follows from the fact that every positive integer divides 0. Identity 3 follows from the basic fact relating divides and addition on slide 8.

Outline	Number Theory for RSA	Modular Arithmetic	Z <i>n</i>	Z [*]
0	00		0000000	000000000000000000000000000000000000
GCD				

Computing GCD without factoring

The Euclidean identities allow the problem of computing gcd(a, b) to be reduced to the problem of computing gcd(a - b, b).

The new problem is "smaller" as long as b > 0.

The size of the problem gcd(a, b) is |a| + |b|, the sum of the absolute value of the two arguments.

Outline 0	Number Theory for RSA	Modular Arithmetic	Z _n 0000000	Z [*] ○○○○○○●○○○○○○○○
GCD				

An easy recursive GCD algorithm

```
int gcd(int a, int b)
{
    if ( a < b ) return gcd(b, a);
    else if ( b == 0 ) return a;
    else return gcd(a-b, b);
}</pre>
```

This algorithm is not very efficient, as you will quickly discover if you attempt to use it, say, to compute gcd(1000000, 2).

Outline 0	Number Theory for RSA	Modular Arithmetic	Z _n 0000000	Z [*] ○○○○○○○●○○○○○○○
GCD				

Repeated subtraction

Repeatedly applying identity (3) to the pair (a, b) until it can't be applied any more produces the sequence of pairs

 $(a, b), (a - b, b), (a - 2b, b), \dots, (a - qb, b).$

The sequence stops when a - qb < b.

How many times you can subtract *b* from *a* while remaining non-negative? Answer: The quotient $q = \lfloor a/b \rfloor$.

Outline 0	Number Theory for RSA	Modular Arithmetic	Z _n 0000000	Z [*] ○○○○○○○○●○○○○○○
GCD				

Using division in place of repeated subtractions

- The amout a qb that is left after q subtractions is just the remainder $a \mod b$.
- Hence, one can go directly from the pair (a, b) to the pair $(a \mod b, b)$.

This proves the identity

 $gcd(a, b) = gcd(a \mod b, b).$ (4)

Outline 0	Number Theory for RSA	Modular Arithmetic	Z _n 0000000	Z [*] ○○○○○○○○●○○○○○
GCD				

Full Euclidean algorithm

```
Recall the inefficient GCD algorithm.
int gcd(int a, int b) {
  if (a < b) return gcd(b, a);
  else if ( b == 0 ) return a;
  else return gcd(a-b, b);
The following algorithm is exponentially faster.
int gcd(int a, int b) {
  if (b == 0) return a;
  else return gcd(b, a%b);
7
Principal change: Replace gcd(a-b,b) with gcd(b, a\%b).
Besides collapsing repeated subtractions, we have a > b for all but
the top-level call on gcd(a, b). This eliminates roughly half of the
remaining recursive calls.
```

Outline 0	Number Theory for RSA	Modular Arithmetic	Z _n 0000000	Z [*] ○○○○○○○○○●○○○○
GCD				

Complexity of GCD

The new algorithm requires at most in O(n) stages, where *n* is the sum of the lengths of *a* and *b* when written in binary notation, and each stage involves at most one remainder computation.

The following iterative version eliminates the stack overhead:

```
int gcd(int a, int b) {
    int aa;
    while (b > 0) {
        aa = a;
        a = b;
        b = aa % b;
    }
    return a;
}
```

Outline	Number Theory for RSA	Modular Arithmetic	Z <i>n</i>	Z [*]
0	00		0000000	○○○○○○○○○○○○○○○○○
Relatively prim	ne numbers, ${\sf Z}_n^*$, and $\phi(n)$			

Relatively prime numbers

Two integers *a* and *b* are *relatively prime* if they have no common prime factors.

Equivalently, a and b are relatively prime if gcd(a, b) = 1.

Let \mathbf{Z}_n^* be the set of integers in \mathbf{Z}_n that are relatively prime to *n*, so

$$\mathbf{Z}_n^* = \{ a \in \mathbf{Z}_n \mid \gcd(a, n) = 1 \}.$$

Example:

$$\textbf{Z}_{21}^{*} = \{1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20\}.$$

Outline	Number Theory for RSA	Modular Arithmetic	Z <i>n</i>	Z [*] _n
0	00		0000000	○○○○○○○○○○○○○○○○○○
Relatively pri	me numbers, Z_n^* , and $\phi(n)$			

Euler's totient function $\phi(n)$

 $\phi(n)$ is the cardinality (number of elements) of \mathbf{Z}_n^* , i.e.,

 $\phi(n)=|\mathbf{Z}_n^*|.$

Example: $\phi(21) = |\mathbf{Z}_{21}^*| = 12.$

Go back and count them!

Outline	Number Theory for RSA	Modular Arithmetic	Z _n	Z [*] _n
0	00		0000000	○○○○○○○○○○○●○○
Relatively prin	me numbers, ${\sf Z}_n^*$, and $\phi(n)$			

Properties of $\phi(n)$

1. If p is prime, then

 $\phi(p)=p-1.$

2. More generally, if p is prime and $k \ge 1$, then

$$\phi(p^k) = p^k - p^{k-1} = (p-1)p^{k-1}$$

3. If gcd(m, n) = 1, then

 $\phi(mn) = \phi(m)\phi(n).$

Outline 0	Number Theory for RSA	Modular Arithmetic	Z _n 0000000	Z [*] ○○○○○○○○○○○○○●○
Relatively pri	me numbers, ${\sf Z}_n^*$, and $\phi(n)$			

Example: $\phi(126)$

Can compute $\phi(n)$ for all $n \ge 1$ given the factorization of n.

$$\begin{aligned} \phi(126) &= \phi(2) \cdot \phi(3^2) \cdot \phi(7) \\ &= (2-1) \cdot (3-1)(3^{2-1}) \cdot (7-1) \\ &= 1 \cdot 2 \cdot 3 \cdot 6 = 36. \end{aligned}$$

The 36 elements of **Z**^{*}₁₂₆ are: 1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 53, 55, 59, 61, 65, 67, 71, 73, 79, 83, 85, 89, 95, 97, 101, 103, 107, 109, 113, 115, 121, 125.

Outline 0	Number Theory for RSA	Modular Arithmetic	Z _n 0000000	Z [*] ○○○○○○○○○○○○○○●
Relatively prir	me numbers, Z_n^* , and $\phi(n)$			

A formula for $\phi(n)$

Here is an explicit formula for $\phi(n)$.

Theorem

Write n in factored form, so $n = p_1^{e_1} \cdots p_k^{e_k}$, where p_1, \ldots, p_k are distinct primes and e_1, \ldots, e_k are positive integers.² Then

$$\phi(n) = (p_1 - 1) \cdot p_1^{e_1 - 1} \cdots (p_k - 1) \cdot p_k^{e_k - 1}.$$

Important: For the product of distinct primes p and q,

$$\phi(pq) = (p-1)(q-1).$$

 2 By the fundamental theorem of arithmetic, every integer can be written uniquely in this way up to the ordering of the factors.