# CPSC 467: Cryptography and Security 

Michael J. Fischer

Lecture 11
October 6, 2020

Number Theory for RSA

Modular Arithmetic
Division of Integers

Integers Modulo n

Multiplicative Subgroup of $\mathbf{Z}_{n}$
Greatest common divisor
Multiplicative subgroup of $\mathbf{Z}_{n}$

## Number Theory for RSA

## Recall: RSA cryptosystem in a nutshell

## RSA Step

Choose two large primes $p, q$.
$n=p q$ and $\phi(n)=(p-1)(q-1) . \quad$ Bignum arithmetic
Choose $e, d$ so $e d \equiv 1(\bmod \phi(n))$. Diophantine equations
It follows that $m^{e d} \equiv m(\bmod n)$. Euler's theorem
$E_{e}(m)=c=m^{e} \bmod n$
$\left.D_{d}(c)=m=c^{d} \bmod n.\right\}$

Number Theory Needed
Primality test

Fast modular exponentiation

## Modular Arithmetic

## $\mathbf{Z}_{n}, \mathbf{Z}_{n}^{*}$, and products of two primes

We first need

- Some theory of $\mathbf{Z}_{n}$, the integers modulo $n$;
- Some theory of $\mathbf{Z}_{n}^{*}$, the integers in $\mathbf{Z}_{n}$ that have no divisors in common with $n$ (except for 1 );
- The Euler totient function $\phi(n)=\left|\mathbf{Z}_{n}^{*}\right|$;
- Some properties of numbers $n$ that are the product of two distinct large primes. In particular, for such numbers $n$, $\phi(n)=\left|\mathbf{Z}_{n}^{*}\right|=(p-1)(q-1)$.


## Quotient and remainder

## Theorem (Euclidean division)

Let $a, b$ be integers and assume $b>0$. There are unique integers $q$ (the quotient) and $r$ (the remainder) such that $a=b q+r$ and $0 \leq r<b$.
Write the quotient as $a \div b$ and the remainder as $a \bmod b$. Then

$$
a=b \times(a \div b)+(a \bmod b)
$$

Equivalently,

$$
\begin{gathered}
a \bmod b=a-b \times(a \div b) . \\
a \div b=\lfloor a / b\rfloor .^{1}
\end{gathered}
$$

[^0]
## Divides

$b$ divides a (exactly), written $b \mid a$, in case $a \equiv 0(\bmod b)$ (or equivalently, $a=b q$ for some integer $q$ ).

Fact
If $d \mid(a+b)$, then either d divides both $a$ and $b$, or $d$ divides neither of them.

Proof.
Suppose $d \mid(a+b)$ and $d \mid a$. Then $a+b=d q_{1}$ and $a=d q_{2}$ for some integers $q_{1}$ and $q_{2}$. Substituting for $a$ and solving for $b$, we get

$$
b=d q_{1}-d q_{2}=d\left(q_{1}-q_{2}\right) .
$$

Hence, $d \mid b$.

## The mod operator for negative numbers

When either $a$ or $b$ is negative, there is no consensus on the definition of $a \bmod b$.

By our definition, $a \bmod b$ is always in the range $[0 \ldots b-1]$, even when $a$ is negative.

Example,

$$
(-5) \bmod 3=(-5)-3 \times((-5) \div 3)=-5-3 \times(-2)=1
$$

## The mod operator \% in C

In the C programming language, the mod operator $\%$ is defined differently, so $(a \% b) \neq(a \bmod b)$ when $a$ is negative and $b$ is positive.

The C standard defines $a \% b$ to be the number $r$ satisfying the equation $(a / b) * b+r=a$, so $r=a-(a / b) * b$.
$C$ also defines $a / b$ to be the result of rounding the real number $a / b$ towards zero, so $-5 / 3=-1$. Hence,

$$
-5 \% 3=-5-(-5 / 3) * 3=-5+3=-2 .
$$

## Integers Modulo n

## The mod relation

We just saw that mod is a binary operation on integers.
Mod is also used to denote a relationship on integers:

$$
a \equiv b(\bmod n) \quad \text { iff } \quad n \mid(a-b)
$$

That is, $a$ and $b$ have the same remainder when divided by $n$. An immediate consequence of this definition is that

$$
a \equiv b(\bmod n) \quad \text { iff } \quad(a \bmod n)=(b \bmod n)
$$

Thus, the two notions of mod aren't so different after all!
We sometimes write $a \equiv_{n} b$ to mean $a \equiv b(\bmod n)$.

## Mod is an equivalence relation

The two-place relationship $\equiv_{n}$ is an equivalence relation.
The relation $\equiv_{n}$ partitions the integers $\mathbf{Z}$ into $n$ pairwise disjoint infinite sets $C_{0}, \ldots, C_{n-1}$, called residue classes, such that:

1. Every integer is in a unique residue class;
2. Integers $x$ and $y$ are equivalent $(\bmod n)$ if and only if they are members of the same residue class.

## Representatives for residue classes

The unique class $C_{j}$ containing integer $b$ is denoted by $[b]_{\equiv_{n}}$ or simply by [b].

Fact

$$
[a]=[b] i f f a \equiv b(\bmod n) .
$$

If $x \in[b]$, then $x$ is said to be a representative or name of the residue class $[b]$. Obviously, $b$ is a representative of $[b]$.

For example, if $n=7$, then [ -11 ], [ -4$]$, [3], [10], [17] are all names for the same residue class

$$
C_{3}=\{\ldots,-11,-4,3,10,17, \ldots\}
$$

## Canonical names

The canonical or preferred name for the class $[b]$ is the unique representative $x$ of $[b]$ in the range $0 \leq x \leq n-1$.

For example, if $n=7$, the canonical name for [10] is 3 .
Why is the canonical name unique?

## Mod is a congruence relation

## Definition

The relation $\equiv$ is a congruence relation with respect to addition, subtraction, and multiplication of integers if
$1 . \equiv$ is an equivalence relation, and
2. for each arithmetic operation $\odot \in\{+,-, \times\}$, if $a \equiv a^{\prime}$ and $b \equiv b^{\prime}$, then $a \odot b \equiv a^{\prime} \odot b^{\prime}$.

The class containing the result of $a \odot b$ depends only on the classes to which $a$ and $b$ belong and not the particular representatives chosen. Thus,

$$
[a \odot b]=\left[a^{\prime} \odot b^{\prime}\right] .
$$

## Operations on residue classes

We can extend our operations to work directly on the family of residue classes (rather than on integers).

Let $\odot$ be an arithmetic operation in $\{+,-, \times\}$, and let $[a]$ and $[b]$ be residue classes. Define $[a] \odot[b]=[a \odot b]$.

If you've followed everything so far, it should be no surprise that the canonical name for $[a \odot b]$ is $(a \odot b) \bmod n$ !

## Multiplicative Subgroup of $\mathbf{Z}_{n}$

## Greatest common divisor

## Definition

The greatest common divisor of two integers $a$ and $b$, written $\operatorname{gcd}(a, b)$, is the largest integer $d$ such that $d \mid a$ and $d \mid b$.
$\operatorname{gcd}(a, b)$ is always defined unless $a=b=0$ since 1 is a divisor of every integer, and the divisor of a non-zero number cannot be larger (in absolute value) than the number itself.

Question: Why isn't $\operatorname{gcd}(0,0)$ well defined?

## Computing the GCD

$\operatorname{gcd}(a, b)$ is easily computed if $a$ and $b$ are given in factored form.
Namely, let $p_{i}$ be the $i^{\text {th }}$ prime. Write $a=\prod p_{i}^{e_{i}}$ and $b=\prod p_{i}^{f_{i}}$. Then

$$
\operatorname{gcd}(a, b)=\prod p_{i}^{\min \left(e_{i}, f_{i}\right)}
$$

Example: $168=2^{3} \cdot 3 \cdot 7$ and $450=2 \cdot 3^{2} \cdot 5^{2}$, so $\operatorname{gcd}(168,450)=2 \cdot 3=6$.

However, factoring is believed to be a hard problem, and no polynomial-time factorization algorithm is currently known. (If it were easy, then Eve could use it to break RSA, and RSA would be of no interest as a cryptosystem.)

## Euclidean algorithm

Fortunately, $\operatorname{gcd}(a, b)$ can be computed efficiently without the need to factor $a$ and $b$ using the famous Euclidean algorithm.

Euclid's algorithm is remarkable, not only because it was discovered a very long time ago, but also because it works without knowing the factorization of $a$ and $b$.

## Euclidean identities

The Euclidean algorithm relies on several identities satisfied by the gcd function. In the following, assume $a>0$ and $a \geq b \geq 0$ :

$$
\begin{align*}
\operatorname{gcd}(a, b) & =\operatorname{gcd}(b, a)  \tag{1}\\
\operatorname{gcd}(a, 0) & =a  \tag{2}\\
\operatorname{gcd}(a, b) & =\operatorname{gcd}(a-b, b) \tag{3}
\end{align*}
$$

Identity 1 is obvious from the definition of gcd. Identity 2 follows from the fact that every positive integer divides 0 . Identity 3 follows from the basic fact relating divides and addition on slide 8 .

## Computing GCD without factoring

The Euclidean identities allow the problem of computing $\operatorname{gcd}(a, b)$ to be reduced to the problem of computing $\operatorname{gcd}(a-b, b)$.

The new problem is "smaller" as long as $b>0$.
The size of the problem $\operatorname{gcd}(a, b)$ is $|a|+|b|$, the sum of the absolute value of the two arguments.

## An easy recursive GCD algorithm

```
int gcd(int a, int b)
{
    if ( a < b ) return gcd(b, a);
    else if ( b == O ) return a;
    else return gcd(a-b, b);
}
```

This algorithm is not very efficient, as you will quickly discover if you attempt to use it, say, to compute $\operatorname{gcd}(1000000,2)$.

## Repeated subtraction

Repeatedly applying identity (3) to the pair $(a, b)$ until it can't be applied any more produces the sequence of pairs

$$
(a, b),(a-b, b),(a-2 b, b), \ldots,(a-q b, b)
$$

The sequence stops when $a-q b<b$.
How many times you can subtract $b$ from a while remaining non-negative?
Answer: The quotient $q=\lfloor a / b\rfloor$.

## Using division in place of repeated subtractions

The amout $a-q b$ that is left after $q$ subtractions is just the remainder $a \bmod b$.

Hence, one can go directly from the pair $(a, b)$ to the pair $(a \bmod b, b)$.

This proves the identity

$$
\begin{equation*}
\operatorname{gcd}(a, b)=\operatorname{gcd}(a \bmod b, b) \tag{4}
\end{equation*}
$$

## Full Euclidean algorithm

Recall the inefficient GCD algorithm.

```
int gcd(int a, int b) {
    if ( a < b ) return gcd(b, a);
    else if ( b == 0 ) return a;
    else return gcd(a-b, b);
}
```

The following algorithm is exponentially faster.
int $\operatorname{gcd}(i n t a, i n t b)$ \{
if ( b == O ) return a;
else return $\operatorname{gcd}(b, a \% b)$;
\}

Principal change: Replace $\operatorname{gcd}(a-b, b)$ with $\operatorname{gcd}(b, a \% b)$.
Besides collapsing repeated subtractions, we have $a \geq b$ for all but the top-level call on $\operatorname{gcd}(a, b)$. This eliminates roughly half of the remaining recursive calls.

## Complexity of GCD

The new algorithm requires at most in $O(n)$ stages, where $n$ is the sum of the lengths of $a$ and $b$ when written in binary notation, and each stage involves at most one remainder computation.

The following iterative version eliminates the stack overhead:

```
int gcd(int a, int b) {
    int aa;
    while (b > 0) {
        aa = a;
        a = b;
        b}=\textrm{aa}%\textrm{b}
    }
    return a;
}
```


## Relatively prime numbers

Two integers $a$ and $b$ are relatively prime if they have no common prime factors.
Equivalently, $a$ and $b$ are relatively prime if $\operatorname{gcd}(a, b)=1$.
Let $\mathbf{Z}_{n}^{*}$ be the set of integers in $\mathbf{Z}_{n}$ that are relatively prime to $n$, so

$$
\mathbf{Z}_{n}^{*}=\left\{a \in \mathbf{Z}_{n} \mid \operatorname{gcd}(a, n)=1\right\} .
$$

Example:

$$
\mathbf{Z}_{21}^{*}=\{1,2,4,5,8,10,11,13,16,17,19,20\} .
$$

## Euler's totient function $\phi(n)$

$\phi(n)$ is the cardinality (number of elements) of $\mathbf{Z}_{n}^{*}$, i.e.,

$$
\phi(n)=\left|\mathbf{Z}_{n}^{*}\right| .
$$

Example: $\phi(21)=\left|\mathbf{Z}_{21}^{*}\right|=12$.
Go back and count them!

## Properties of $\phi(n)$

1. If $p$ is prime, then

$$
\phi(p)=p-1 .
$$

2. More generally, if $p$ is prime and $k \geq 1$, then

$$
\phi\left(p^{k}\right)=p^{k}-p^{k-1}=(p-1) p^{k-1} .
$$

3. If $\operatorname{gcd}(m, n)=1$, then

$$
\phi(m n)=\phi(m) \phi(n) .
$$

## Example: $\phi(126)$

Can compute $\phi(n)$ for all $n \geq 1$ given the factorization of $n$.

$$
\begin{aligned}
\phi(126) & =\phi(2) \cdot \phi\left(3^{2}\right) \cdot \phi(7) \\
& =(2-1) \cdot(3-1)\left(3^{2-1}\right) \cdot(7-1) \\
& =1 \cdot 2 \cdot 3 \cdot 6=36 .
\end{aligned}
$$

The 36 elements of $\mathbf{Z}_{126}^{*}$ are:
$1,5,11,13,17,19,23,25,29,31,37,41,43,47,53,55$, 59, 61, 65, 67, 71, 73, 79, 83, 85, 89, 95, 97, 101, 103, 107, 109, 113, 115, 121, 125.

## A formula for $\phi(n)$

Here is an explicit formula for $\phi(n)$.
Theorem
Write $n$ in factored form, so $n=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}$, where $p_{1}, \ldots, p_{k}$ are distinct primes and $e_{1}, \ldots, e_{k}$ are positive integers. ${ }^{2}$ Then

$$
\phi(n)=\left(p_{1}-1\right) \cdot p_{1}^{e_{1}-1} \cdots\left(p_{k}-1\right) \cdot p_{k}^{e_{k}-1} .
$$

Important: For the product of distinct primes $p$ and $q$,

$$
\phi(p q)=(p-1)(q-1) .
$$

[^1]
[^0]:    ${ }^{1}$ Here, / is ordinary real division and $\lfloor x\rfloor$, the floor of $x$, is the greatest integer $\leq x$. In C, / is used for both $\div$ and / depending on its operand types.

[^1]:    ${ }^{2}$ By the fundamental theorem of arithmetic, every integer can be written uniquely in this way up to the ordering of the factors.

