
Outline Discrete log Diffie-Hellman ElGamal Primitive Roots

CPSC 467: Cryptography and Security

Michael J. Fischer

Lecture 12
October 8, 2020

CPSC 467, Lecture 12, October 8, 2020 1/36



Outline Discrete log Diffie-Hellman ElGamal Primitive Roots

Discrete Logarithm

Diffie-Hellman Key Exchange

ElGamal Cryptosystem

Primitive Roots
Properties of primitive roots
Lucas test
Special form primes

CPSC 467, Lecture 12, October 8, 2020 2/36



Outline Discrete log Diffie-Hellman ElGamal Primitive Roots

Discrete Logarithm

CPSC 467, Lecture 12, October 8, 2020 3/36



Outline Discrete log Diffie-Hellman ElGamal Primitive Roots

Ordinary logarithms

Let y = bx over the reals, b 6= 0. The ordinary base-b logarithm is
the inverse of exponentiation, so x = logb(y).

In other words, logb(y) is the power x to which b must be raised
to equal x .

CPSC 467, Lecture 12, October 8, 2020 4/36



Outline Discrete log Diffie-Hellman ElGamal Primitive Roots

Logarithms modp
The discrete logarithm is defined similarly. Let y = bx mod p,
where p is a prime, b ∈ Z∗

p, and x , y ∈ Zp.

The base-b discrete logarithm modulo p is the inverse of
exponentiation in Zp. We say x = logb(y) modulo p.

In other words, logb(y) modulo p is the least non-negative integer
x to which b must be raised modulo p to equal y (if it exists).

Why might x not exist? Take p = 7, b = 2, y = 3. The successive
powers of b mod p are 2, 4, 1, 2, 4, 1, . . ., so log2(3) (mod 7) does
not exist.

Fact (not needed yet): If b is a primitive root1 of p, then logb(y)
exists for every y ∈ Z∗

p.
1We will talk about primitive roots later.

CPSC 467, Lecture 12, October 8, 2020 5/36



Outline Discrete log Diffie-Hellman ElGamal Primitive Roots

Discrete log problem

The discrete log problem is the problem of computing
logb(y) mod p, where p is a prime and b is a primitive root of p.

No efficient algorithm is known for this problem and it is believed
to be intractable.

However, the inverse of the function logb() mod p is the function
powerb(x) = bx mod p, which is easily computable.

powerb is believed to be a one-way function, that is a function that
is easy to compute but hard to invert.

CPSC 467, Lecture 12, October 8, 2020 6/36



Outline Discrete log Diffie-Hellman ElGamal Primitive Roots

Diffie-Hellman Key Exchange

CPSC 467, Lecture 12, October 8, 2020 7/36



Outline Discrete log Diffie-Hellman ElGamal Primitive Roots

Key exchange problem

The key exchange problem is for Alice and Bob to agree on a
common random key k.

One way for this to happen is for Alice to choose k at random and
then communicate it to Bob over a secure channel.

But that presupposes the existence of a secure channel.

CPSC 467, Lecture 12, October 8, 2020 8/36



Outline Discrete log Diffie-Hellman ElGamal Primitive Roots

D-H key exchange overview

The Diffie-Hellman Key Exchange protocol allows Alice and Bob to
agree on a secret k without having prior secret information and
without giving an eavesdropper Eve any information about k . The
protocol is given on the next slide.

We assume that p and g are publicly known, where p is a large
prime and g a primitive root of p.

From the fact on slide 5, these assumptions imply the existence of
logg (y) for every y ∈ Z∗

p.)

CPSC 467, Lecture 12, October 8, 2020 9/36



Outline Discrete log Diffie-Hellman ElGamal Primitive Roots

D-H key exchange protocol

Alice Bob

Choose random x ∈ Zφ(p). Choose random y ∈ Zφ(p).

a = g x mod p. b = g y mod p.

Send a to Bob. Send b to Alice.

ka = bx mod p. kb = ay mod p.

Diffie-Hellman Key Exchange Protocol.

Clearly, ka = kb since

ka ≡ bx ≡ g xy ≡ ay ≡ kb (mod p).

Hence, k = ka = kb is a common key.

CPSC 467, Lecture 12, October 8, 2020 10/36



Outline Discrete log Diffie-Hellman ElGamal Primitive Roots

Why choose from Zφ(p)?

One might ask why x and y should be chosen from Zφ(p) rather
than from Zp?

The reason is because of another number-theoretic fact that we
haven’t talked about – Euler’s theorem – which says

gφ(p) ≡ 1 (mod p).

It follows that x ≡ y (mod φ(p))⇔ g x ≡ g y (mod p).

This means that the exponents can always be reduced mod φ(p)
without changing the resulting ka or kb. Since smaller exponents
are computationally more efficient, there’s no reason to look
outside of Zφ(p).

CPSC 467, Lecture 12, October 8, 2020 11/36



Outline Discrete log Diffie-Hellman ElGamal Primitive Roots

Security of DH key exchange

In practice, Alice and Bob may use this protocol to generate a
session key for a symmetric cryptosystem, which they subsequently
use to exchange private information.

The security of this protocol relies on Eve’s presumed inability to
compute k from a and b and the public information p and g . This
is sometime called the Diffie-Hellman problem and, like discrete
log, is believed to be intractable.

CPSC 467, Lecture 12, October 8, 2020 12/36



Outline Discrete log Diffie-Hellman ElGamal Primitive Roots

Diffie-Hellman problem and discrete log

Certainly the Diffie-Hellman problem is no harder that discrete log,
for if Eve could find the discrete log of a, then she would know x
and could compute ka the same way that Alice does.

However, it is not known to be as hard as discrete log.

CPSC 467, Lecture 12, October 8, 2020 13/36



Outline Discrete log Diffie-Hellman ElGamal Primitive Roots

ElGamal Cryptosystem

CPSC 467, Lecture 12, October 8, 2020 14/36



Outline Discrete log Diffie-Hellman ElGamal Primitive Roots

A variant of DH key exchange

A variant protocol has Bob going first followed by Alice.

Alice Bob

Choose random y ∈ Zφ(p).

b = g y mod p.

Send b to Alice.

Choose random x ∈ Zφ(p).

a = g x mod p.

Send a to Bob.

ka = bx mod p. kb = ay mod p.

ElGamal Variant of Diffie-Hellman Key Exchange.

CPSC 467, Lecture 12, October 8, 2020 15/36



Outline Discrete log Diffie-Hellman ElGamal Primitive Roots

Comparison with first DH protocol

The difference here is that Bob completes his action at the
beginning and no longer has to communicate with Alice.

Alice, at a later time, can complete her half of the protocol and
send a to Bob, at which point Alice and Bob share a key.

CPSC 467, Lecture 12, October 8, 2020 16/36



Outline Discrete log Diffie-Hellman ElGamal Primitive Roots

Turning D-H into a public key cryptosystem

This is just the scenario we want for public key cryptography. Bob
generates a public key (p, g , b) and a private key (p, g , y).

Alice (or anyone who obtains Bob’s public key) can complete the
protocol by sending a to Bob.

This is the idea behind the ElGamal public key cryptosystem.

CPSC 467, Lecture 12, October 8, 2020 17/36



Outline Discrete log Diffie-Hellman ElGamal Primitive Roots

ElGamal cryptosystem

Assume Alice knows Bob’s public key (p, g , b). To encrypt a
message m:

I She first completes her part of the key exchange protocol to
obtain numbers a and k .

I She then computes c = mk mod p and sends the pair (a, c)
to Bob.

I When Bob gets this message, he first uses a to complete his
part of the protocol and obtain k .

I He then computes m = k−1c mod p.

CPSC 467, Lecture 12, October 8, 2020 18/36



Outline Discrete log Diffie-Hellman ElGamal Primitive Roots

Combining key exchange with underlying cryptosystem

The ElGamal cryptosystem uses the simple encryption function
Ek(m) = mk mod p to actually encode the message.

Any symmetric cryptosystem would work equally well.

An advantage of using a standard system such as AES is that long
messages can be sent following only a single key exchange.

CPSC 467, Lecture 12, October 8, 2020 19/36



Outline Discrete log Diffie-Hellman ElGamal Primitive Roots

A hybrid ElGamal cryptosystem
A hybrid ElGamal public key cryptosystem.

I As before, Bob generates a public key (p, g , b) and a private
key (p, g , y).

I To encrypt a message m to Bob, Alice first obtains Bob’s
public key and chooses a random x ∈ Zφ(p).

I She next computes a = g x mod p and k = bx mod p.

I She then computes E(p,g ,b)(m) = (a, Êk(m)) and sends it to

Bob. Here, Ê is the encryption function of the underlying
symmetric cryptosystem.

I Bob receives a pair (a, c).

I To decrypt, Bob computes k = ay mod p and then computes
m = D̂k(c).

CPSC 467, Lecture 12, October 8, 2020 20/36



Outline Discrete log Diffie-Hellman ElGamal Primitive Roots

Randomized encryption

We remark that a new element has been snuck in here. The
ElGamal cryptosystem and its variants require Alice to generate a
random number which is then used in the course of encryption.

Thus, the resulting encryption function is a random function rather
than an ordinary function.

A random function is one that can return different values each
time it is called, even for the same arguments.

Formally, we view a random function as returning a probability
distribution on the output space.

CPSC 467, Lecture 12, October 8, 2020 21/36



Outline Discrete log Diffie-Hellman ElGamal Primitive Roots

Remarks about randomized encryption

With E(p,g ,b)(m) each message m has many different possible
encryptions. This has some consequences.

An advantage: Eve can no longer use the public encryption
function to check a possible decryption.

Even if she knows m, she cannot verify m is the correct decryption
of (a, c) simply by computing E(p,g ,b)(m), which she could do for a
deterministic cryptosystem such as RSA.

Two disadvantages:

I Alice must have a source of randomness.

I The ciphertext is longer than the corresponding plaintext.

CPSC 467, Lecture 12, October 8, 2020 22/36



Outline Discrete log Diffie-Hellman ElGamal Primitive Roots

Primitive Roots

CPSC 467, Lecture 12, October 8, 2020 23/36



Outline Discrete log Diffie-Hellman ElGamal Primitive Roots

Properties of primitive roots

Using the ElGamal cryptosystem

To use the ElGamal cryptosystem, we must be able to generate
random pairs (p, g), where p is a large prime, and g is a primitive
root of p.

We now look at primitive roots and how to find them.

CPSC 467, Lecture 12, October 8, 2020 24/36



Outline Discrete log Diffie-Hellman ElGamal Primitive Roots

Properties of primitive roots

Primitive root

We say g is a primitive root of n if g generates all of Z∗
n, that is,

Z∗
n = {g , g2, g3, . . . , gφ(n)}.

By definition, this holds if and only if ord(g) = φ(n).2

Not every integer n has primitive roots.

Theorem (Gauss)

The numbers having primitive roots are 1, 2, 4, pk , 2pk , where p is
an odd prime and k ≥ 1.

In particular, every prime has primitive roots.

2ord(g) is the smallest integer r > 1 such that g r ≡ 1 (mod n).

CPSC 467, Lecture 12, October 8, 2020 25/36



Outline Discrete log Diffie-Hellman ElGamal Primitive Roots

Properties of primitive roots

Number of primitive roots

Theorem
The number of primitive roots of a prime p is φ(φ(p)).

Gauss’s theorem shows that p has at least one primitive root. The
following lemma shows that there are at least φ(φ(p)) primitive
roots. We omit the proof that there are no more than that number.

Lemma (powers of primitive roots)

If g is a primitive root of p and x ∈ Z∗
φ(p), then g x is also a

primitive root of p.

CPSC 467, Lecture 12, October 8, 2020 26/36



Outline Discrete log Diffie-Hellman ElGamal Primitive Roots

Properties of primitive roots

Proof of lemma

We argue that every element h in Z∗
p can be expressed as

h = (g x)y for some y .

I Since g is a primitive root, we know that h ≡ g ` (mod p) for
some `.

I We wish to find y such that g xy ≡ g ` (mod p).

I By Euler’s theorem, this is possible if the congruence equation
xy ≡ ` (mod φ(p)) has a solution y .

I It is known that a solution exists iff gcd(x , φ(p)) |`.
I But this is the case since x ∈ Z∗

φ(p), so gcd(x , φ(p)) = 1.

CPSC 467, Lecture 12, October 8, 2020 27/36



Outline Discrete log Diffie-Hellman ElGamal Primitive Roots

Properties of primitive roots

Primitive root example

Let p = 19, so φ(p) = 18 and φ(φ(p)) = φ(2) · φ(9) = 6.

Consider g = 2 and g = 5. The subgroups Sg of Zp generated by
each g is given by the table:

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2k 2 4 8 16 13 7 14 9 18 17 15 11 3 6 12 5 10 1

5k 5 6 11 17 9 7 16 4 1 5 6 11 17 9 7 16 4 1

We see that 2 is a primitive root since S2 = Z∗
p but 5 is not.

Now let’s look at Z∗
φ(p) = Z∗

18 = {1, 5, 7, 11, 13, 17}.

The complete set of primitive roots of p (in Zp) is then

{2, 25, 27, 211, 213, 217} = {2, 13, 14, 15, 3, 10}.

CPSC 467, Lecture 12, October 8, 2020 28/36



Outline Discrete log Diffie-Hellman ElGamal Primitive Roots

Lucas test

Lucas test

Theorem (Lucas test)

g is a primitive root of a prime p if and only if

g (p−1)/d 6≡ 1 (mod p)

for all d > 1 such that d |(p − 1).

CPSC 467, Lecture 12, October 8, 2020 29/36



Outline Discrete log Diffie-Hellman ElGamal Primitive Roots

Lucas test

Proof of correctness for Lucas test

Suppose the Lucas test fails for some d > 1, d |(p − 1). That
means g (p−1)/d ≡ 1 (mod p). It follows that

ord(g) ≤ p − 1

d
< p − 1 = φ(p),

so g is not a primitive root of p. Why?

Conversely, if g is not a primitive root of p, then ord(g) < p − 1,
or equivalently, (p − 1)/ord(g) > 1. Hence, the test will fail for
d = (p − 1)/ord(g) since then

g (p−1)/d = gord(g) ≡ 1 (mod p).

CPSC 467, Lecture 12, October 8, 2020 30/36



Outline Discrete log Diffie-Hellman ElGamal Primitive Roots

Lucas test

Problems with the Lucas test

A drawback to the Lucas test is that one must try all the divisors
of p − 1, and there can be many.

Moreover, to find the divisors efficiently implies the ability to
factor. Thus, it does not lead to an efficient algorithm for finding a
primitive root of an arbitrary prime p.

However, there are some special cases which we can handle.

CPSC 467, Lecture 12, October 8, 2020 31/36



Outline Discrete log Diffie-Hellman ElGamal Primitive Roots

Special form primes

Special form primes

Let p and q be odd primes such that p = 2q + 1.

Then, p − 1 = 2q, so p − 1 is easily factored and the Lucas test
easily employed.

There are lots of examples of such pairs, e.g., q = 41 and p = 83.

CPSC 467, Lecture 12, October 8, 2020 32/36



Outline Discrete log Diffie-Hellman ElGamal Primitive Roots

Special form primes

Number of primitive roots of special form primes

Recall p = 2q + 1. We just saw that the number of primitive roots
of p is

φ(φ(p)) = φ(p − 1) = φ(2q) = φ(2)φ(q) = q − 1.

Hence, the density of primitive roots in Z∗
p is

(q − 1)/(p − 1) = (q − 1)/2q ≈ 1/2.

This makes it easy to find primitive roots of p probabilistically —
choose a random element a ∈ Z∗

p and apply the Lucas test to it.

CPSC 467, Lecture 12, October 8, 2020 33/36



Outline Discrete log Diffie-Hellman ElGamal Primitive Roots

Special form primes

Density of special form primes

How many special form primes are there?
We defer the question of the density of primes q such that 2q + 1
is also prime but remark that we can relax the requirements a bit.

CPSC 467, Lecture 12, October 8, 2020 34/36



Outline Discrete log Diffie-Hellman ElGamal Primitive Roots

Special form primes

Relaxed requirements on special form primes

Here’s another way of generating a prime pair (p, q).

Let q be a prime. Generate numbers u = 2, 4, 6, . . . until we find u
for which p = uq + 1 is prime.

[Why do we skip odd u?]

Then p − 1 = uq for small u.

u can be factored by exhaustive search. At that point, we can
apply the Lucas test as before to find primitive roots.

CPSC 467, Lecture 12, October 8, 2020 35/36



Outline Discrete log Diffie-Hellman ElGamal Primitive Roots

Special form primes

How many u must be tried?

By the prime number theorem, approximately one out of every
ln(q) numbers around the size of q will be prime.

While that applies to randomly chosen numbers, not to the
numbers in this particular sequence, there is at least some hope
that the density of primes will be similar.

If so, we can expect that u/2 will be about ln(q), so u is easily
factored for cryptographic-sized primes q.

CPSC 467, Lecture 12, October 8, 2020 36/36


	Outline
	Discrete Logarithm
	Diffie-Hellman Key Exchange
	ElGamal Cryptosystem
	Primitive Roots
	Properties of primitive roots
	Lucas test
	Special form primes


