CPSC 467: Cryptography and Security

Michael J. Fischer

Lecture 13 October 13, 2020

CPSC 467, Lecture 13, October 13, 2020

Algorithms 000000
(

Message Integrity and Authenticity

Symmetric Digital Signatures

Asymmetric Digital Signatures Implications of Digital Signatures

Digital Signature Algorithms

Signatures from commutative cryptosystems Signatures from non-commutative cryptosystems

00

Message Integrity and Authenticity

Protecting messages

Encryption protects message confidentiality.

We also wish to protect message integrity and authenticity.

- Integrity means that the message has not been altered.
- *Authenticity* means that the message is genuine.

The two are closely linked. The result of a modification attack by an active adversary could be a message that fails either integrity or authenticity checks (or both).

In addition, it should not be possible for an adversary to come up with a forged message that satisfies both integrity and authenticity.

Outline 0	Integrity/Authenticity 00●	Symmetric Digital Signatures	Asymmetric Digital Signatures	Algorithms 000000

Protecting integrity and authenticity

Authenticity is protected using symmetric or asymmetric digital signatures.

A *digital signature* (or MAC) is a string s that binds an individual or other entity A with a message m.

The recipient of the message verifies that s is a valid signature of A for message m.

It should hard for an adversary to create a valid signature s' for a message m' without knowledge of A's secret information.

This also protects integrity, since a modified message m' will not likely verify with signature s (or else (m', s) would be a successful forgery).

Outline 0	Integrity/Authenticity 000	Symmetric Digital Signatures	Asymmetric Digital Signatures	Algorithms 000000

Symmetric Digital Signatures

Message authentication codes (MACs)

A *Message Authentication Code* or *MAC* is a digital signature associated with a *symmetric (one-key) signature scheme*.

A MAC is generated by a function $C_k(m)$ that can be computed by anyone knowing the secret key k.

It should be hard for an attacker, without knowing k, to find any pair (m, ξ) such that $\xi = C_k(m)$.

This should remain true even if the attacker knows a set of valid MAC pairs $\{(m_1, \xi_1), \ldots, (m_t, \xi_t)\}$ so long as *m* itself is not the message in one of the known pairs.

Creating an authenticated message

Alice has a secret key k.

- Alice protects a message m (encrypted or not) by attaching a MAC ξ = C_k(m) to the message m.
- The pair (m, ξ) is an *authenticated message*.
- ► To produce a MAC requires possession of the secret key k.

Verifying an authenticated message

Bob receives an authenticated message (m', ξ') . We assume Bob also knows k.

- Bob verifies the message's integrity and authenticity by verifying that ξ' = C_k(m').
- ► If his check succeeds, he accepts m' as a valid message from Alice.

► To verify a MAC requires possession of the secret key k.

Assuming Alice and Bob are the only parties who share k, then Bob knows that m' came from Alice.

Cheating

Mallory *successfully cheats* if Bob accepts a message m' as valid that Alice never sent.

Assuming a secure MAC scheme, Mallory can not cheat with non-negligible success probability, even knowing a set of valid message-MAC pairs previously sent by Alice.

If he could, he would be able to construct valid forged authenticated messages, violating the assumed properties of a MAC.

Computing a MAC

A block cipher such as AES can be used to compute a MAC by making use of CBC or CFB ciphertext chaining modes.

In these modes, the last ciphertext block c_t depends on all t message blocks m_1, \ldots, m_t , so we define

 $C_k(m) = c_t.$

Note that the MAC is only a single block long. This is in general much shorter than the message.

A MAC acts like a checksum for preserving data integrity, but it has the advantage that an adversary cannot compute a valid MAC for an altered message.

Algorithms

Protecting both privacy and authenticity

If Alice wants both privacy and authenticity, she can encrypt m and use the MAC to protect the ciphertext from alteration.

- Alice sends $c = E_k(m)$ and $\xi = C_k(c)$.
- Bob, after receiving c' and ξ', only decrypts c' after first verifying that ξ' = C_k(c').
- ▶ If it verifies, then Bob assumes c' was produced by Alice, so he also assume that $m' = D_k(c')$ is Alice's message m.

Another possible use of a MAC

Another possibility is for Alice to send $c = E_k(m)$ and $\xi = C_k(m)$. Here, the MAC is computed from m, not c.

Bob, upon receiving c' and ξ' , first decrypts c' to get m' and then checks that $\xi' = C_k(m')$, i.e., Bob checks $\xi' = C_k(D_k(c'))$

Does this work just as well?

In practice, this might also work, but its security *does not follow* from the assumed security property of the MAC.

The problem

The MAC property says Mallory cannot produce a pair (m',ξ') for an m' that Alice never sent.

It does *not* follow that he cannot produce a pair (c', ξ') that Bob will accept as valid, even though c' is not the encryption of one of Alice's messages.

If Mallory succeeds in convincing Bob to accept (c', ξ') , then Bob will decrypt c' to get $m' = D_k(c')$ and incorrectly accept m' as coming from Alice.

Example of a flawed use of a MAC

Here's how Mallory might find (c', ξ') such that $\xi' = C_k(D_k(c'))$.

Suppose the MAC function C_k is derived from underlying block encryption function E_k using the CBC or CFB chaining modes as described earlier, and Alice also encrypts messages using E_k with the same chaining rule.

Then the MAC is just the last ciphertext block c'_t , and Bob will always accept (c', c'_t) as valid.

000

Asymmetric Digital Signatures

Asymmetric digital signatures

An asymmetric (public-key) digital signature can be viewed as a 2-key MAC, just as an asymmetric (public-key) cryptosystem is a 2-key version of a classical cryptosystem.

In the literature, the term *digital signature* generally refers to the asymmetric version.

Asymmetric digital signatures

Let \mathcal{M} be a *message space* and \mathcal{S} a *signature space*.

A signature scheme consists of a private signing key d, a public verification key e, a signature function $S_d : \mathcal{M} \to \mathcal{S}$, and a verification predicate $V_e \subseteq \mathcal{M} \times \mathcal{S}$.¹

A signed message is a pair $(m, s) \in \mathcal{M} \times S$. A signed message is valid if $V_e(m, s)$ holds, and we say that (m, s) is signed with respect to e.

CPSC 467, Lecture 13, October 13, 2020

¹As with RSA, we denote the private component of the key pair by the letter d and the public component by the letter e, although they no longer have same mnemonic significance.

Fundamental property of a signature scheme

Basic requirement:

The signing function always produces a valid signature, that is,

$$V_e(m, S_d(m)) \tag{1}$$

holds for all $m \in \mathcal{M}$.

Assuming e is Alice's public verification key, and only Alice knows the corresponding signing key d, then a signed message (m, s) that is valid under e identifies Alice with m (possibly erroneously, as we shall see).

Outline 0	Integrity/Authenticity 000	Symmetric Digital Signatures	Asymmetric Digital Signatures	Algorithms 000000
Implication	s of Digital Signatures			

What does a digital signature imply?

We like to think of a digital signature as a digital analog to a conventional signature.

- A conventional signature binds a person to a document. Barring forgery, a valid signature indicates that a particular individual performed the action of signing the document.
- A digital signature binds a signing key to a document. Barring forgery, a valid digital signature indicates that a particular signing key was used to sign the document.

However, there is an important difference. A digital signature only binds the signing key to the document.

Other considerations must be used to bind the individual to the signing key.

Disavowal

An individual can always disavow a signature on the grounds that the private signing key has become compromised.

Here are two ways that this can happen.

- Her signing key might be copied, perhaps by keystroke monitors or other forms of spyware that might have infected her computer, or a stick memory or laptop containing the key might be stolen.
- She might deliberately publish her signing key in order to relinquish responsibility for documents signed by it.

For both of these reasons, one cannot conclude without a reasonable doubt that a digitally signed document was indeed signed by the purported holder of the signing key.

Implications of Digital Signatures

Practical usefulness of digital signatures

This isn't to say that digital signatures aren't useful; only that they have significantly different properties than conventional signatures.

In particular, they are subject to disavowal by the signer in a way that conventional signatures are not.

Nevertheless, they are still very useful in situations where disavowal is not a problem.

Outline 0	Integrity/Authenticity 000	Symmetric Digital Signatures	Asymmetric Digital Signatures	Algorithms ••••••

Digital Signature Algorithms

Outline 0	Integrity/Authenticity 000	Symmetric Digital Signatures	Asymmetric Digital Signatures	Algorithms 00000
Signatures	from commutative cryptosyste	ems		

RSA digital signature scheme

Let n be an RSA modulus and (e, d) an RSA key pair. e is public and d is private as usual.

- Signing function: $S_d(m) = D_d(m)$
- Verification predicate: $V_e(m,s) \Leftrightarrow m = E_e(s)$.

Must verify that $V_e(m, S_d(m))$ holds for all messages m, i.e., that $m = E_e(D_d(m))$ holds.

This is the reverse of the requirement for RSA to be a valid cryptosystem, viz. $m = D_d(E_e(m))$ for all $m \in \mathbf{Z}_m$.

RSA satisfies both conditions since

$$m \equiv D_d(E_e(m)) \equiv (m^e)^d \equiv (m^d)^e \equiv E_e(D_d(m)) \pmod{n}.$$

Outline 0	Integrity/Authenticity 000	Symmetric Digital Signatures	Asymmetric Digital Signatures	Algorithms ○○●○○○
Signatures	from commutative cryptosyst	ems		

Commutative cryptosystems

A cryptosystem with this property that $D_d \circ E_e = E_e \circ D_d$ is said to be *commutative*, where " \circ " denotes functional composition.

Indeed, any commutative public key cryptosystem can be used for digital signatures in exactly this same way as we did for RSA.

Signatures from non-commutative cryptosystems

Signatures from non-commutative cryptosystems

What if E_e and D_d do not commute?

One could define:

- Signing function: $S_e(m) = E_e(m)$
- Verification predicate: $V_d(m,s) \Leftrightarrow m = D_d(s)$.

Every validly-signed message $(m, S_e(m))$ would verify since $D_d(E_e(m)) = m$ is the basic property of a cryptosystem.

Now, Alice has to keep e private and make d public, which she can do. However, the resulting system might not be secure, since even though it may be hard for Eve to find d from e and n, it does not follow that it is hard to find e from d and n.

Signatures from non-commutative cryptosystems

Interchanging public and private keys

For RSA, it is just as hard to find e from d as it is to find d from e. That's because RSA is completely symmetric in e and d. Not all cryptosystems enjoy this symmetry property.

Outline Integrity/Authenticity 0 000	Symmetric Digital Signatures	Asymmetric Digital Signatures	Algorithms
Signatures from non-commutative cry	tosystems		

ElGamal cryptosystem is not symmetric

The ElGamal scheme discussed in $\underline{\text{lecture 12}}$ is based on the equation

 $b = g^y \pmod{p},$

where y is private and b public.

Finding y from b, g, p is the discrete log problem — believed to be hard.

Finding *b* from y, g, p, is straightforward, so the roles of public and private key cannot be interchanged while preserving security.

ElGamal found a different way to use the ideas of discrete logarithm to build a signature scheme, which we discuss later.