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Modular square roots

Squares and square roots

Recall that an integer r is a square root of x modulo n if

r2 ≡ x (mod n).

An integer x is a quadratic residue (or perfect square) modulo n if
it has a square root modulo n.

We explore the properties of the squaring function x 7→ x2 mod n
and its “inverse”, y 7→ √y mod n.
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Modular square roots

Generalized inverse

Because the squaring function x 7→ x2 mod n is not one-to-one or
onto, it is not uniquely invertible. Quadratic residues may have
multiple square roots, whereas non-residues have none.

We broaden our notion of inverse by defining
√
y mod n to be the

set of all x ∈ Zn such that x2 ≡ y mod n.1

Thus, in the case that y is not a quadratic residue,
√
y mod n = ∅

(the empty set).

1This same notion of inverse applies to hash functions, which also are not
generally one-to-one and are not required to be onto.
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Modular square roots

A computationally hard problem

The quadratic residuosity assumption says that computing√
y mod n is computationally hard when n is the product of two

distinct large primes.

For such n, the squaring function is believed to be a one-way
function.
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Modular square roots

One-way functions
Cryptography is built on the notion of one-way function, that is, a
function that is easy to compute but hard to invert.

Can’t prove that inversion is hard.

Instead, postulate it to be hard for particular well-studied functions
that have no known feasible inversion algorithms.

Some presumed one-way functions and associated hard problems:

(p, q) 7→ p · q Factoring problem
x 7→ g x mod p Discrete log problem
P 7→ k × P Elliptic curve discrete log problem
x 7→ H(x) Collision-finding problem
x 7→ x2 mod n Quadratic residuosity problem
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Modular square roots

Quadratic residues in Z∗n

If r , x ∈ Zn and r2 ≡ x (mod n), then

r ∈ Z∗
n iff x ∈ Z∗

n.

Why? Because

gcd(r , n) = 1 iff gcd(x , n) = 1

This follows from the fact that r2 = x + un for some u, so if p is a
prime divisor of n, then

p | r iff p |x .

CPSC 467, Lecture 19a, November 5, 2020 8/37



Outline Quadratic Residues FFS

Modular square roots

QRn and QNRn

Assume from now on that n = pq for p, q large distinct primes and
all quadratic residues and square roots are in Z∗

n unless stated
otherwise.

We partition Z∗
n into two parts.

QRn = {x ∈ Z∗
n | x is a quadratic residue modulo n}.

QNRn = Z∗
n −QRn.

QRn is the set of quadratic residues modulo n.

QNRn is the set of quadratic non-residues modulo n.
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Modular square roots

Quadratic residues in Z∗15

The following table shows all elements of
Z∗
15 = {1, 2, 4, 7, 8, 11, 13, 14} and their squares.

r r2 mod 15

1 1
2 4
4 1
7 4

8 = −7 4
11 = −4 1
13 = −2 4
14 = −1 1

Thus, QR15 = {1, 4} and QNR15 = {2, 7, 8, 11, 13, 14}.
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Square roots modulo an odd prime p

Quadratic residues modulo an odd prime p

Fact
For an odd prime p,

I Every x ∈ QRp has exactly two square roots in Z∗
p;

I Exactly 1/2 of the elements of Z∗
p are quadratic residues.

In other words, if x ∈ QRp,

|
√
x | = 2.

|QRp| =
|Z∗

p|
2

=
p − 1

2
.
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Square roots modulo an odd prime p

Quadratic residues in Z∗11

The following table shows all elements b ∈ Z∗
11 and their squares.

r r2 mod 11

1 1
2 4
3 9
4 5
5 3

r −r r2 mod 11

6 −5 3
7 −4 5
8 −3 9
9 −2 4

10 −1 1

Thus, QR11 = {1, 3, 4, 5, 9} and QNR11 = {2, 6, 7, 8, 10}.

CPSC 467, Lecture 19a, November 5, 2020 12/37



Outline Quadratic Residues FFS

Sqrt mod pq

Quadratic residues modulo pq

We now turn to the case where n = pq is the product of two
distinct odd primes.

Fact
Let n = pq for p, q distinct odd primes.

I Every x ∈ QRn has exactly four square roots in Z∗
n;

I Exactly 1/4 of the elements of Z∗
n are quadratic residues.

In other words, if x ∈ QRn then |
√
x | = 4, so

|QRn| =
|Z∗

n|
4

=
(p − 1)(q − 1)

4
.
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Sqrt mod pq

Proof sketch

I Let x ∈ QRn. Then x ∈ QRp and x ∈ QRq.
I There are numbers rp ∈ QRp and rq ∈ QRq such that

I
√
x (mod p) = {±rp}, and

I
√
x (mod q) = {±rq}.

I Each pair (u, v) with u ∈ {±rp} and v ∈ {±rq} can be
combined to yield a distinct element rx ,y in

√
x (mod n).2

I Hence, |
√
x | = 4, and |QRn| = 1

4 |Z
∗
n|.

2To find rx,y from x and y requires use of the Chinese Remainder theorem
(see Appendix ).
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Feige-Fiat-Shamir Authentication Protocol
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Reprise: A simplified one-round FFS protocol

I n = pq, where p and q are distinct large primes.

I v ∈ QRn. s ∈
√
v−1 (mod n).

I n and v are public. s is Alice’s secret.

FFS protocol:

Alice Bob

1. Choose random r ∈ Z∗
n.

Compute x = r2 mod n.
x−→

2.
b←− Choose random b ∈ {0, 1}.

3. Compute y = rsb mod n.
y−→ Check x = y2vb mod n.
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Properties of FFS protocol

We make three claims for the FFS protocol.

1. [Completeness] When both Alice and Bob are honest, Bob’s
check always succeeds.

2. [Soundness] If Mallory attempts to impersonate Alice without
knowing her secret s, Bob’s check will fail with probability at
least 1/2.

3. [Zero knowledge] Anything that Mallory can compute while
interacting with Alice in the FFS protocol could also be
computed without Alice’s involvement. In particular, if Mallory
can find Alice’s secret s after running the FFS protocol, then
he could have found s without ever talking to Alice.
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Completeness

We showed in lecture 18 that Bob’s check

x = y2v r mod n.

always succeeds when both parties are honest.
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Soundness

Theorem
Suppose Mallory doesn’t know a square root of v−1. Then Bob’s
verification will fail with probability at least 1/2.

Proof.
To successfully fool Bob, Mallory must come up with x in step 1
and y in step 3 satisfying x = y2vb mod n.

Mallory sends x in step 1 before Bob chooses b, so she does not
know which value of b to expect.

When Mallory receives b, she responds by sending some value y ,
which we will call yb, to Bob. (continued. . . )
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Proof: case 1

Proof (continued).

Case 1: There is at least one b ∈ {0, 1} for which yb fails to satisfy

x = y2vb mod n.

Since b = 0 and b = 1 each occur with probability 1/2, this means
that Bob’s verification will fail with probability at least 1/2, as
desired.

(continued. . . )
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Proof: case 2

Proof (continued).

Case 2: y0 and y1 both satisfy the verification equation, so
x = y20 mod n and x = y21 v mod n.

We can solve these equations for v−1 to get

v−1 ≡ y21 x
−1 ≡ y21 y

−2
0 (mod n)

But then y1y
−1
0 mod n is a square root of v−1.

Since Mallory was able to compute both y1 and y0, then she was
also able to compute a square root of v−1, contradicting the
assumption that she doesn’t “know” a square root of v−1.
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Successful cheating with probability 1/2

We remark that it is possible for Mallory to cheat with success
probability 1/2.

I She guesses the bit b that Bob will send her in step 2 and
generates a pair (x , y).

I If she guesses b = 0, then she chooses x = r2 mod n and
y = r mod n, just as Alice would have done.

I If she guesses b = 1, then she chooses y arbitrarily and
x = y2v mod n.

She proceeds to send x in step 1 and y in step 3.

The pair (x , y) is accepted by Bob if Mallory’s guess of b turns out
to be correct, which will happen with probability 1/2.
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Zero knowledge

We now consider the case of an honest Alice interacting with a
dishonest Mallory pretending to be Bob, or simply a dishonest Bob
who wants to capture Alice’s secret.

Alice would like assurance that her secret is protected if she follows
the protocol, regardless of what Mallory (or Bob) does.

Consider what Mallory knows at the end of the protocol.
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Mallory sends b = 0

Suppose Mallory sends b = 0 in step 2.

Then she ends up with a pair (x , y), where y is a random number
and x is its square modulo n.

Neither of these numbers depend in any way on Alice’s secret s, so
Mallory gets no direct information about s.

It’s also of no conceivable use to Mallory in trying to find s by
other means, for she can compute such pairs by herself whenever
needed without involving Alice.

If having such pairs would allow her find a square root of v−1, then
she was already able to compute square roots, contrary to the
assumption that finding square roots modulo n is difficult.
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Mallory sends b = 1

Suppose Mallory sends b = 1 in step 2.

Now she ends up with the pair (x , y), where x = r2 mod n and
y = rs mod n.

While y might seem to give information about s, observe that y
itself is just a random element of Zn. This is because r is random,
and the mapping r → rs mod n is one-to-one for all s ∈ Z∗

n. Hence,
as r ranges through all possible values, so does y = rs mod n.

Mallory learns nothing from x that she could not have computed
herself knowing y , for x = y2v mod n.

Again, all she ends up with is a random number (y in this case)
and a quadratic residue x that she can compute knowing y .
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Mallory learns nothing from (x , y)

In both cases, Mallory ends up with information that she could
have computed without interacting with Alice.

Hence, if she could have discovered Alice’s secret by talking to
Alice, then she could have also done so on her own, contradicting
the hardness assumption for computing square roots.

This is the sense in which Alice’s protocol releases zero knowledge
about her secret.
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Proofs About Quadratic Residues
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Proof that |
√
a| = 2 modulo an odd prime p

Let a ∈ QRp.

I It must have a square root b ∈ Z∗
p.

I (−b)2 ≡ b2 ≡ a (mod p), so −b ∈
√
a.

I Moreover, b 6≡ −b (mod p) since p ∼| 2b, so |
√
a| ≥ 2.

I Now suppose c ∈
√
a. Then c2 ≡ a ≡ b2 (mod p).

I Hence, p |c2 − b2 = (c − b)(c + b).

I Since p is prime, then either p |(c − b) or p |(c + b) (or both).

I If p |(c − b), then c ≡ b (mod p).

I If p |(c + b), then c ≡ −b (mod p).

I Hence, c ≡ ±b (mod p), so
√
a = {b,−b}, and |

√
a| = 2.
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Proof that half the elements of Z∗p are in QRp

I Each b ∈ Z∗
p is the square root of exactly one element of

QRp, namely, b2 mod p.

I The mapping b 7→ b2 mod p is a 2-to-1 mapping from Z∗
p to

QRp.

I Therefore, |QRp| = 1
2 |Z

∗
p| as desired.
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Chinese Remainder Theorem
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Systems of congruence equations

Theorem (Chinese remainder theorem)

Let n1, n2, . . . , nk be positive pairwise relatively-prime integers3, let
n =

∏k
i=1 ni , and let ai ∈ Zni for i = 1, . . . , k. Consider the system

of congruence equations with unknown x:

x ≡ a1 (mod n1)
x ≡ a2 (mod n2)

...
x ≡ ak (mod nk)

(1)

(1) has a unique solution x ∈ Zn.

3This means that gcd(ni , nj) = 1 for all 1 ≤ i < j ≤ k.
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How to solve congruence equations
To solve for x , let

Ni = n/ni = n1n2 . . . ni−1︸ ︷︷ ︸ · ni+1 . . . nk︸ ︷︷ ︸,
and compute Mi = N−1

i mod ni , for 1 ≤ i ≤ k . We compute N−1
i

by solving the congruence equation

MiNi ≡ 1 (mod ni ). (2)

The solution to (1) is

x =

(
k∑

i=1

aiMiNi

)
mod n (3)

CPSC 467, Lecture 19a, November 5, 2020 33/37



Proofs About Quadratic Residues Chinese remainder

How to find modular inverses

To solve the congruence equation (2), we need to find integers Mi

and u such that
MiNi − 1 = uni (4)

i.e., ni divides MiNi − 1.

Equation (4) has solutions over the integers iff gcd(Ni , ni ) = 1.

Such linear equations over the integers are called
Diophantine equations. They can be solved using the
Extended Euclidean Algorithm.
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Correctness

Lemma

MjNj ≡
{

1 (mod ni ) if j = i ;
0 (mod ni ) if j 6= i .

Proof.
MiNi ≡ 1 (mod ni ) since Mi = N−1

i mod ni .
If j 6= i , then MjNj ≡ 0 (mod ni ) since ni |Nj .

It follows from the lemma and the fact that ni |n that

x ≡
k∑

i=1

aiMiNi ≡ ai (mod ni ) (5)

for all 1 ≤ i ≤ k, establishing that (3) is a solution of (1).
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Uniqueness

To see that the solution is unique in Zn, let
χ : Zn → Zn1 × . . .× Znk be the mapping

x 7→ (x mod n1, . . . , x mod nk).

χ is a surjection4 since χ(x) = (a1, . . . , ak) iff x satisfies (1).

Since also |Zn| = |Zn1 × . . .× Znk |, χ is a bijection, and there is
only one solution to (1) in Zn.

4A surjection is an onto function.
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An alternative proof of uniqueness

A less slick but more direct way of seeing uniqueness is to suppose
that x = u and x = v are both solutions to (1).

Then u ≡ v (mod ni ), so ni |(u − v) for all i .

By the pairwise relatively prime condition on the ni , it follows that
n|(u − v), so u ≡ v (mod n). Hence, the solution is unique in Zn.
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