
Outline QR QR encryption Secure PRSG

CPSC 467: Cryptography and Security

Michael J. Fischer

Lecture 20b
November 10, 2020

CPSC 467, Lecture 20b, November 10, 2020 1/23

Outline QR QR encryption Secure PRSG

Quadratic Residues Revisited
Euler criterion
Distinguishing Residues from Non-Residues

Encryption Based on Quadratic Residues
Summary

Secure Random Sequence Generators
Pseudorandom sequence generators
Looking random

CPSC 467, Lecture 20b, November 10, 2020 2/23

Outline QR QR encryption Secure PRSG

Quadratic Residues Revisited

CPSC 467, Lecture 20b, November 10, 2020 3/23

Outline QR QR encryption Secure PRSG

QR reprise

Quadratic residues play a key role in the Feige-Fiat-Shamir zero
knowledge authentication protocol.

They can also be used to produce a secure probabilistic
cryptosystem and a cryptographically strong pseudorandom bit
generator.

Before we can proceed to these protocols, we need some more
number-theoretic properties of quadratic residues.

CPSC 467, Lecture 20b, November 10, 2020 4/23

Outline QR QR encryption Secure PRSG

Euler criterion

Euler criterion

The Euler criterion gives a feasible method for testing membership
in QRp when p is an odd prime.

Theorem (Euler Criterion)

An integer a is a non-trivial1 quadratic residue modulo an odd
prime p iff

a(p−1)/2 ≡ 1 (mod p).

1A non-trivial quadratic residue is one that is not equivalent to 0 (mod p).

CPSC 467, Lecture 20b, November 10, 2020 5/23

Outline QR QR encryption Secure PRSG

Euler criterion

Proof of Euler Criterion

Proof in forward direction.
Let a ≡ b2 (mod p) for some b 6≡ 0 (mod p). Then

a(p−1)/2 ≡ (b2)(p−1)/2 ≡ bp−1 ≡ 1 (mod p)

by Euler’s theorem, as desired.

CPSC 467, Lecture 20b, November 10, 2020 6/23

Outline QR QR encryption Secure PRSG

Euler criterion

Proof of Euler Criterion (continued)

Proof in reverse direction.
Suppose a(p−1)/2 ≡ 1 (mod p). Clearly a 6≡ 0 (mod p). We find a
square root b of a modulo p.

Let g be a primitive root of p. Choose k so that a ≡ gk (mod p),
and let ` = (p − 1)k/2. Then

g ` ≡ g (p−1)k/2 ≡ (gk)(p−1)/2 ≡ a(p−1)/2 ≡ 1 (mod p).

Since g is a primitive root and g ` ≡ 1 (mod p), then φ(p) |`.
Hence, `/φ(p) = `/(p − 1) = k/2 is an integer.

Let b = gk/2. Then b2 ≡ gk ≡ a (mod p), so b is a non-trivial
square root of a modulo p, as desired.

CPSC 467, Lecture 20b, November 10, 2020 7/23

Outline QR QR encryption Secure PRSG

Distinguishing Residues from Non-Residues

A hard problem associated with quadratic residues

Let n = pq, where p and q are distinct odd primes.

Recall that each a ∈ QRn has 4 square roots, and 1/4 of the
elements in Z∗

n are quadratic residues.

Some elements of Z∗
n are easily recognized as non-residues, but

there is a subset of non-residues (which we denote by Q00
n) that

are hard to distinguish from quadratic residues without knowing p
and q.

CPSC 467, Lecture 20b, November 10, 2020 8/23

Outline QR QR encryption Secure PRSG

Distinguishing Residues from Non-Residues

Quadratic residues modulo n = pq
Let n = pq, p, q distinct odd primes.

We divide the numbers in Z∗
n into four classes depending on their

membership in QRp and QRq.2

I Let Q11
n = {a ∈ Z∗

n | a ∈ QRp ∩QRq}.
I Let Q10

n = {a ∈ Z∗
n | a ∈ QRp ∩QNRq}.

I Let Q01
n = {a ∈ Z∗

n | a ∈ QNRp ∩QRq}.
I Let Q00

n = {a ∈ Z∗
n | a ∈ QNRp ∩QNRq}.

Under these definitions, QRn = Q11
n

QNRn = Q00
n ∪ Q01

n ∪ Q10
n

2To be strictly formal, we classify a ∈ Z∗
n according to whether or not

(a mod p) ∈ QRp and whether or not (a mod q) ∈ QRq.

CPSC 467, Lecture 20b, November 10, 2020 9/23

Outline QR QR encryption Secure PRSG

Distinguishing Residues from Non-Residues

Quadratic residuosity problem

Definition (Quadratic residuosity problem)

The quadratic residuosity problem is to decide, given
a ∈ Q00

n ∪ Q11
n , whether or not a ∈ Q11

n .

Fact
There is no known feasible algorithm for solving the quadratic
residuosity problem that gives the correct answer significantly more
than 1/2 the time for uniformly distributed random a ∈ Q00

n ∪Q11
n ,

unless the factorization of n is known.

The quadratic residuosity assumption is that no such algorithm
exists.

CPSC 467, Lecture 20b, November 10, 2020 10/23

Outline QR QR encryption Secure PRSG

Encryption Based on Quadratic Residues

CPSC 467, Lecture 20b, November 10, 2020 11/23

Outline QR QR encryption Secure PRSG

Securely encrypting single bits

Goldwasser and Micali devised a probabilistic public key
cryptosystem based on the assumed hardness of the quadratic
residuosity problem that allows one to securely encrypt single bits.

The idea is to encrypt a “0” by a random residue of QRn and a
“1” by a random non-residue in Q00

n . Any ability to decrypt the bit
is tantamount to solving the quadratic residuosity problem.

CPSC 467, Lecture 20b, November 10, 2020 12/23

Outline QR QR encryption Secure PRSG

Goldwasser-Micali probabilistic cryptosystem

Key Generation

The public key consists of a pair e = (n, y), where n = pq for
distinct odd primes p, q, and y is any member of Q00

n .

The private key consists of the triple d = (n, y , p).

The message space is M = {0, 1}. (Single bits!)

The ciphertext space is C = Q00
n ∪ Q11

n .

CPSC 467, Lecture 20b, November 10, 2020 13/23

Outline QR QR encryption Secure PRSG

Goldwasser-Micali probabilistic cryptosystem (cont.)

Encryption
To encrypt m ∈M, Alice chooses a random r ∈ Z∗

n and sets
a = r2 mod n. The result a is a random element of QRn = Q11

n .

If m = 0, set c = a (which is in Q11
n).

If m = 1, set c = ay mod n (which is in Q00
n).

Decryption
Bob, knowing the private key p, can use the Euler Criterion to
quickly determine whether or not c ∈ QRp and hence whether
c ∈ Q11

n or c ∈ Q00
n , thereby determining m.

CPSC 467, Lecture 20b, November 10, 2020 14/23

Outline QR QR encryption Secure PRSG

Goldwasser-Micali probabilistic cryptosystem (cont.)

Security
Eve’s problem of finding m given c is equivalent to the problem of
testing if c ∈ Q11

n , given that c ∈ Q00
n ∪ Q11

n .

This is just the quadratic residuosity problem, assuming the
ciphertexts are uniformly distributed. One can show:

I Every element of Q11
n is equally likely to be chosen as the

ciphertext c in case m = 0;

I Every element of Q00
n is equally likely to be chosen as the

ciphertext c in case m = 1.

If the messages are also uniformly distributed, then any element of
Q00

n ∪ Q11
n is equally likely to be the ciphertext.

CPSC 467, Lecture 20b, November 10, 2020 15/23

Outline QR QR encryption Secure PRSG

Summary

Important facts about quadratic residues
1. If p is odd prime, then |QRp| = |Z∗

p|/2, and for each
a ∈ QRp, |

√
a| = 2.

2. If n = pq, p 6= q odd primes, then |QRn| = |Z∗
n|/4, and for

each a ∈ QRn, |
√
a| = 4.

3. Euler criterion: a ∈ QRp iff a(p−1)/2 ≡ 1 (mod p), p odd
prime.

4. If p is odd prime, a ∈ QRp, can feasibly find y ∈
√
a. (See

appendix.)

5. If n = pq, p 6= q odd primes, then distinguishing Q00
n from

Q11
n is believed to be infeasible. Hence, infeasible to find

y ∈
√
a. Why?

If not, one could attempt to find y ∈
√
a, check that y2 ≡ a

(mod n), and conclude that a ∈ Q11 if successful.

CPSC 467, Lecture 20b, November 10, 2020 16/23

Outline QR QR encryption Secure PRSG

Secure Random Sequence Generators

CPSC 467, Lecture 20b, November 10, 2020 17/23

Outline QR QR encryption Secure PRSG

Pseudorandom sequence generators

Pseudorandom sequence generators

A pseudorandom sequence generator (PRSG) is a function that
maps a short seed to a long “random-looking” output sequence.

The seed typically has length between 32 and a few thousand bits.

The output is typically much longer, ranging from thousands or
millions of bits or more, but polynomially related to the seed
length.

The output of a PRSG is a sequence that is supposed to “look
random”.

CPSC 467, Lecture 20b, November 10, 2020 18/23

Outline QR QR encryption Secure PRSG

Pseudorandom sequence generators

Incremental generators

In practice, a PRSG is implemented as a co-routine that outputs
the next block of bits in the sequence each time it is called. For
example, the linux function

void srandom(unsigned int seed)

sets the 32-bit seed. Each subsequent call on
long int random(void)

returns an integer in the range [0, . . . ,RAND MAX].

On my machine, the return value is 31 bits long (even though
sizeof(long int) is 64).

CPSC 467, Lecture 20b, November 10, 2020 19/23

Outline QR QR encryption Secure PRSG

Pseudorandom sequence generators

Limits on incremental generators

Incremental generators typically are based on state machines with a
finite number of states, so the output eventually becomes periodic.

The period of random() is said to be approximately 16 ∗ (231 − 1).

The output of a PRSG becomes predictable from past outputs
once the generator starts to repeat. The point of repetition defines
the maximum usable output length, even if the implementation
allows bits to continue to be produced.

CPSC 467, Lecture 20b, November 10, 2020 20/23

Outline QR QR encryption Secure PRSG

Looking random

What does it mean for a string to look random?

For the output of a PRSG to look random:

I It must pass common statistical tests of randomness. For
example, the frequencies of 0’s and 1’s in the output sequence
must be approximately equal.

I It must lack obvious structure, such as having all 1’s occur in
pairs.

I It must be difficult to find the seed given the output sequence,
since otherwise the whole sequence is easily generated.

I It must be difficult to correctly predict any generated bit, even
knowing all of the other bits of the output sequence.

I It must be difficult to distinguish its output from truly random
bits.

CPSC 467, Lecture 20b, November 10, 2020 21/23

Outline QR QR encryption Secure PRSG

Looking random

Chaitin/Kolmogorov randomness

Chaitin and Kolmogorov defined a string to be “random” if its
shortest description is almost as long as the string itself.

By this definition, most strings are random by a simple counting
argument.

For example, 011011011011011011011011011 is easily described as
the pattern 011 repeated 9 times. On the other hand,
101110100010100101001000001 has no obvious short description.

While philosophically very interesting, these notions are somewhat
different than the statistical notions that most people mean by
randomness and do not seem to be useful for cryptography.

CPSC 467, Lecture 20b, November 10, 2020 22/23

Outline QR QR encryption Secure PRSG

Looking random

Cryptographically secure PRSG

A PRSG is said to be cryptographically secure if its output cannot
be feasibly distinguished from truly random bits.

In other words, no feasible probabilistic algorithm behaves
significantly differently when presented with an output from the
PRSG as it does when presented with a truly random string of the
same length.

We argue that this definition encompasses all of the desired
properties for “looking random” discussed earlier,

CPSC 467, Lecture 20b, November 10, 2020 23/23

	Outline
	Quadratic Residues Revisited
	Euler criterion
	Distinguishing Residues from Non-Residues

	Encryption Based on Quadratic Residues
	Summary

	Secure Random Sequence Generators
	Pseudorandom sequence generators
	Looking random

