HW1, CPSC 468/568, Due Feb. 4, 2016

Problem 1 (5 points):

Prove that, for any constants c and d, both greater than 1, $n^d = o(c^n)$, *i.e.*, exponential grows faster than polynomial.

Problem 2 (9 points):

For each of the three lists of four functions, give an ordering f_1, f_2, f_3, f_4 such that $f_1(n) = O(f_2(n)) = O(f_3(n)) = O(f_4(n))$. You need not provide proofs, just correct orderings.

In some cases, stronger statements can be made, *i.e.*, there are pairs f_i , f_{i+1} in one or more of the correct orderings such that $f_i(n) = o(f_{i+1}(n))$. You may earn one point of extra credit for each such pair that you identify only if you provide a proof that this little-oh relationship holds.

- 1. $\log n, \sqrt{n}, (\log n)^2, \log \log n.$
- 2. $n^{4/3}$, $n \log n$, n^2 , $\log(n!)$.
- 3. $n!, n^n, e^n, 2^{\log n^{\log \log n}}$

Problem 3-a (9 points):

Specify a Turing Machine that, on input $\lfloor p \rfloor$, the binary representation of a nonnegative integer p, outputs $\lfloor p + 1 \rfloor$. You may use any number of states, any alphabet, and any number of work tapes.

Example input tape:

... 1001011111...

Corresponding output tape:

...1001100000...

Your solution should have running time O(n), where n is the length of the input.

Problem 3-b (7 points):

Provide an *oblivious* Turing Machine that computes the same function as the machine that you provided in part (a). Your solution should have running time $O(n \log n)$.

Problem 4 (14 points):

Prove that $2SAT \in P$.

Problem 5 (10 points):

A "system of quadratic equations modulo 2 in *n* variables" is a set of equations over \mathbb{Z}_2 in which each term has degree at most 2. (For example, $x_1 \cdot x_2 + x_3 \equiv 1 \pmod{2}$ is a quadratic equation modulo 2.) Such a system is said to be "solvable" if there is an assignment of values in \mathbb{Z}_2 to the variables x_1, \ldots, x_n that satisfies all of the equations.

Prove that the language of solvable systems of quadratic equations modulo 2 is NP-complete.

Problem 6 (13 points):

A graph G(V, E) is k-colorable if there is an assignment f of k colors to the vertices $(i.e., f: V \longrightarrow \{1, 2, ..., k\})$, such that, if $(a, b) \in E$, then $f(a) \neq f(b)$. That is, the endpoints of each edge are assigned different colors. Let **3Colorable** denote the set of all graphs that are 3-colorable.

Provide a many-to-one, polynomial-time reduction from 3Colorable to SAT. Prove that the reduction is correct and runs in polynomial time.

Problem 7 (10 points):

Prove that, if every unary NP language is in P, then EXP = NEXP.

Problem 8 (13 points):

Let $\Delta = \text{NP} \cap \text{coNP}$. Prove that Δ equals the class of decision problems that are polynomialtime Cook-reducible to Δ , *i.e.*, $\Delta = P^{\Delta}$.

Problem 9 (10 points):

Let $x_1 \neq x_2$ be distinct elements of $\{0, 1\}^*$. Then E_{x_1,x_2} is defined as the set of all Turing Machines M such that M does not distinguish between the input x_1 and the input x_2 . (More precisely, the elements of E_{x_1,x_2} are encodings of Turing Machines as binary strings, but for brevity we will refer to them as machines.) That is, M is in E_{x_1,x_2} if M either halts on both inputs x_1 and x_2 or halts on neither, and, if it halts on both, $M(x_1) = M(x_2)$.

Prove that membership in the set E_{x_1,x_2} is not decidable.