HW1, CPSC 468/568, Due Feb. 4, 2016

Problem 1 (5 points):
Prove that, for any constants c and d, both greater than 1 , $n^{d}=o\left(c^{n}\right)$, i.e., exponential grows faster than polynomial.

Problem 2 (9 points):
For each of the three lists of four functions, give an ordering $f_{1}, f_{2}, f_{3}, f_{4}$ such that $f_{1}(n)=$ $O\left(f_{2}(n)\right)=O\left(f_{3}(n)\right)=O\left(f_{4}(n)\right)$. You need not provide proofs, just correct orderings.

In some cases, stronger statements can be made, i.e., there are pairs f_{i}, f_{i+1} in one or more of the correct orderings such that $f_{i}(n)=o\left(f_{i+1}(n)\right)$. You may earn one point of extra credit for each such pair that you identify only if you provide a proof that this little-oh relationship holds.

1. $\log n, \sqrt{n},(\log n)^{2}, \log \log n$.
2. $n^{4 / 3}, n \log n, n^{2}, \log (n!)$.
3. $n!, n^{n}, e^{n}, 2^{\log n^{\log \log n}}$.

Problem 3-a (9 points):

Specify a Turing Machine that, on input $\llcorner p\lrcorner$, the binary representation of a nonnegative integer p, outputs $\llcorner p+1\lrcorner$. You may use any number of states, any alphabet, and any number of work tapes.

Example input tape:

$$
\ldots 1001011111 \ldots
$$

Corresponding output tape:

$$
\ldots 1001100000 \ldots
$$

Your solution should have running time $O(n)$, where n is the length of the input.
$\underline{\text { Problem 3-b (7 points): }}$
Provide an oblivious Turing Machine that computes the same function as the machine that you provided in part (a). Your solution should have running time $O(n \log n)$.

Problem 4 (14 points):
Prove that $2 \mathrm{SAT} \in \mathrm{P}$.
Problem 5 (10 points):
A "system of quadratic equations modulo 2 in n variables" is a set of equations over \mathbb{Z}_{2} in which each term has degree at most 2 . (For example, $x_{1} \cdot x_{2}+x_{3} \equiv 1(\bmod 2)$ is a quadratic equation modulo 2.) Such a system is said to be "solvable" if there is an assignment of values in \mathbb{Z}_{2} to the variables x_{1}, \ldots, x_{n} that satisfies all of the equations.

Prove that the language of solvable systems of quadratic equations modulo 2 is NPcomplete.

Problem 6 (13 points):
A graph $G(V, E)$ is k-colorable if there is an assignment f of k colors to the vertices (i.e., $f: V \longrightarrow\{1,2, \ldots, k\})$, such that, if $(a, b) \in E$, then $f(a) \neq f(b)$. That is, the endpoints of each edge are assigned different colors. Let 3Colorable denote the set of all graphs that are 3 -colorable.

Provide a many-to-one, polynomial-time reduction from 3Colorable to SAT. Prove that the reduction is correct and runs in polynomial time.

Problem 7 (10 points):
Prove that, if every unary NP language is in P , then EXP $=$ NEXP.
Problem 8 (13 points):
Let $\Delta=N P \cap$ coNP. Prove that Δ equals the class of decision problems that are polynomialtime Cook-reducible to Δ, i.e., $\Delta=\mathrm{P}^{\Delta}$.

Problem 9 (10 points):
Let $x_{1} \neq x_{2}$ be distinct elements of $\{0,1\}^{*}$. Then $E_{x_{1}, x_{2}}$ is defined as the set of all Turing Machines M such that M does not distinguish between the input x_{1} and the input x_{2}. (More precisely, the elements of $E_{x_{1}, x_{2}}$ are encodings of Turing Machines as binary strings, but for brevity we will refer to them as machines.) That is, M is in $E_{x_{1}, x_{2}}$ if M either halts on both inputs x_{1} and x_{2} or halts on neither, and, if it halts on both, $M\left(x_{1}\right)=M\left(x_{2}\right)$.

Prove that membership in the set $E_{x_{1}, x_{2}}$ is not decidable.

