HW2, CPSC 468/568, Due Feb. 18, 2016

Throughout this assignment, if a proof or step of a proof follows directly from a definition given or a theorem proven in class or in a reading assignment, then you may simply say that, i.e., you need not reproduce proofs given in class or in the reading.

Problem 1 (20 points):
Prove that 2SAT is in NL.
Problem 2 (15 points):
Let BIPARTITE be the set of all undirected graphs $G=(V, E)$ such that V is the disjoint union $V=V_{1} \sqcup V_{2}$ of two vertex sets V_{1} and V_{2}, and all edges in E have one endpoint in V_{1} and one endpoint in V_{2}. Prove that BIPARTITE is in NL.

Problem 3(a) (5 points):
Let $k \geq 1$ be a positive constant. Prove that NP $\nsubseteq \operatorname{DTIME}\left(n^{k}\right)$.
Problem 3(b) (15 points):
Prove that NP ${ }^{\text {EXPCOM }} \nsubseteq$ DTIME $^{\operatorname{EXPCOM}}\left(n^{k}\right)$. Here, EXPCOM is the oracle used in class on Feb. 4, 2016, in the proof of the Baker-Gill-Solovay theorem, and $\operatorname{DTIME}^{\mathrm{A}}\left(n^{k}\right)$ is the class of sets recognizable by deterministic TMs that run in time $O\left(n^{k}\right)$ and have access to oracle A.

Problem 4 (20 points):
Consider the complexity classes $\operatorname{DTIME}\left(n^{2}\right), \operatorname{NTIME}\left(n^{2}\right), \operatorname{NSPACE}\left(n^{5}\right)$, and $\operatorname{DPSACE}\left(n^{8}\right)$. For 4 points each, state and prove 5 containment relationships between pairs of these classes.
$\underline{\text { Problem } 5 \text { (10 points): }}$
Prove that NTIME $\left(n^{k}\right) \subsetneq \operatorname{PSPACE}$, for any constant $k \geq 1$. Does this imply that
NP \subsetneq PSPACE? Briefly justify your answer.
Problem 6 requires you to work through a proof of the Gap Theorem.
Let $M_{0}, M_{1}, M_{2}, \ldots$, be an enumeration of all Turing Machines, e.g., the one in Figure 1.7 of your textbook. Let Γ_{i} be the tape alphabet of M_{i}.

For integers $i, k \geq 0$, define the following property $P(i, k)$: "Any machine among M_{0}, M_{1}, \ldots, M_{i}, on any input of length i, will halt in fewer than k steps, halt after more than 2^{k} steps, or not halt at all" - that is, on an input of length i, none of these machines will halt immediately after a number of steps that is in the interval $\left[k, 2^{k}\right]$.

Define $f(i), i \geq 0$, as follows. Let $k_{0}=2 i$, and, for $j>0$, let $k_{j}=2^{k_{j-1}}+1$. We take $N(i)$ to be $\sum_{j=0}^{i}\left|\Gamma_{j}\right|^{i}$, i.e., the total number of inputs of length i to the first $i+1$ machines M_{0}, \ldots, M_{i}. Then $f(i)$ is defined to be k_{ℓ}, where ℓ is the largest integer less than or equal to $N(i)$ such that $P\left(i, k_{\ell}\right)$ is true.

Problem 6(a) (5 points):
Prove that f is well defined, i.e., that there must be an $\ell \leq N(i)$ such that $P\left(i, k_{\ell}\right)$ is true.
Problem 6(b) (10 points):
Prove that any set in $\operatorname{DTIME}\left(2^{f(n)}\right)$ is in $\operatorname{DTIME}(f(n))$.

