HW2, CPSC 468/568, Due Feb. 18, 2016

Throughout this assignment, if a proof or step of a proof follows directly from a definition given or a theorem proven in class or in a reading assignment, then you may simply say that, *i.e.*, you need not reproduce proofs given in class or in the reading.

Problem 1 (20 points):

Prove that 2SAT is in NL.

Problem 2 (15 points):

Let BIPARTITE be the set of all undirected graphs G = (V, E) such that V is the disjoint union $V = V_1 \sqcup V_2$ of two vertex sets V_1 and V_2 , and all edges in E have one endpoint in V_1 and one endpoint in V_2 . Prove that BIPARTITE is in NL.

Problem 3(a) (5 points):

Let $k \ge 1$ be a positive constant. Prove that NP $\not\subseteq$ DTIME (n^k) .

Problem 3(b) (15 points):

Prove that NP^{EXPCOM} $\not\subseteq$ DTIME^{EXPCOM} (n^k) . Here, EXPCOM is the oracle used in class on Feb. 4, 2016, in the proof of the Baker-Gill-Solovay theorem, and DTIME^A (n^k) is the class of sets recognizable by deterministic TMs that run in time $O(n^k)$ and have access to oracle A.

Problem 4 (20 points):

Consider the complexity classes $DTIME(n^2)$, $NTIME(n^2)$, $NSPACE(n^5)$, and $DPSACE(n^8)$. For 4 points each, state and prove 5 containment relationships between pairs of these classes.

Problem 5 (10 points):

Prove that $NTIME(n^k) \subsetneq PSPACE$, for any constant $k \ge 1$. Does this imply that NP $\subsetneq PSPACE$? Briefly justify your answer.

Problem 6 requires you to work through a proof of the Gap Theorem.

Let M_0, M_1, M_2, \ldots , be an enumeration of all Turing Machines, *e.g.*, the one in Figure 1.7 of your textbook. Let Γ_i be the tape alphabet of M_i .

For integers $i, k \ge 0$, define the following property P(i, k): "Any machine among M_0 , M_1, \ldots, M_i , on any input of length i, will halt in fewer than k steps, halt after more than 2^k steps, or not halt at all" – that is, on an input of length i, none of these machines will halt immediately after a number of steps that is in the interval $[k, 2^k]$.

Define f(i), $i \ge 0$, as follows. Let $k_0 = 2i$, and, for j > 0, let $k_j = 2^{k_{j-1}} + 1$. We take N(i) to be $\sum_{j=0}^{i} |\Gamma_j|^i$, *i.e.*, the total number of inputs of length *i* to the first i + 1 machines M_0, \ldots, M_i . Then f(i) is defined to be k_ℓ , where ℓ is the largest integer less than or equal to N(i) such that $P(i, k_\ell)$ is true.

Problem 6(a) (5 points):

Prove that f is well defined, *i.e.*, that there must be an $\ell \leq N(i)$ such that $P(i, k_{\ell})$ is true.

Problem 6(b) (10 points):

Prove that any set in $DTIME(2^{f(n)})$ is in DTIME(f(n)).