HW6, CPSC 468/568, Due April 26, 2016

Throughout this assignment, if a proof or step of a proof follows directly from a definition given or a theorem proven in class or in a reading assignment, then you may simply say that, *i.e.*, you need not reproduce proofs given in class or in the reading.

Problem 1 (20 points):

Prove that, for any f in #P and any constant $\epsilon > 0$, the function f can be ϵ -approximated in $\mathrm{FP}^{\Sigma_2^P}$. That is, prove that there is a function g that is an ϵ -approximation of f and a deterministic polynomial-time oracle machine M such that M^O computes g, where O is a Σ_2^P -complete set.

(Hint: Use the ideas introduced in the proof that BPP $\subseteq \Sigma_2^P \cap \Pi_2^P$.)

Problem 2 (20 points):

Consider the set C of circuits over the basis consisting of \neg and unbounded fan-in \land and \lor . The non-uniform complexity class AC^0 consists of all languages accepted by families of polynomial-size, constant-depth circuits in C; that is, $L \in AC^0$ if and only if it is accepted by a circuit family $\{C_n\}_{n\geq 0}$ such that $\{C_n\} \subseteq C$, $size(C_n)$ is $n^{O(1)}$, and $depth(C_n)$ is O(1). A Boolean function f on $\{0,1\}^n$ is symmetric if and only if, for any permutation $\sigma \in S_n$, $f(x_1,\ldots,x_n) = f(x_{\sigma(1)},\ldots,x_{\sigma(n)})$.

Prove that, for any $L \in AC^{0}$, there is a constant k such that L is accepted by a circuit family $\{C'_{n}\}_{n\geq 0}$ in which the output gate of every C'_{n} is a symmetric function of fan-in $n^{O(\log^{k} n)} = 2^{O(\log^{k+1} n)}$, each of whose inputs is an \wedge of $O(\log^{k} n)$ input variables or their negations.

(Hint: Consider "scaling down" the proof of Toda's Theorem.)

Problem 3 (30 points):

The language L is in the complexity class Few if there is a nondeterministic polynomialtime machine M, a polynomial-time predicate Q, and a polynomial p such that, for every $x \in \{0, 1\}^*$, $acc_{M(x)} \leq p(|x|)$, and $x \in L$ if and only if $Q(x, acc_{M(x)})$, where $acc_{M(x)}$ is the number of accepting paths of M on input x.

Show that $\text{Few} \subseteq P^{\text{FewP}}$, where FewP is defined as in HW5, problem 6.

Problem 4 (10 points):

The language L is in the complexity class C=P if there is a nondeterministic polynomial-time machine M and a polynomial-time computable function f such that, for every $x \in \{0, 1\}^*$, $x \in L$ if and only if $acc_{M(x)} = f(x)$. Prove that C=P \subseteq PP.

Problem 5 (20 points):

For any positive integer k, the language L is in the complexity class MOD_kP if there is a nondeterministic polynomial-time M such that, for any $x \in \{0, 1\}^*$, x is in L if and only if $acc_{M(x)} \neq 0 \pmod{k}$. So $\oplus P$ is MOD_2P . For any subsets A and B of $\{0, 1\}^*$, we define the join $A \oplus B$ as the union of $\{0x \mid x \in A\}$ and $\{1y \mid y \in B\}$. For five points each, prove that, if k is prime, then MOD_kP is closed under union, intersection, complement, and join.