
An Interactive Proof System for co3SAT

This material was presented in class on March 29 and 31, 2016.
In order to construct interactive proof systems for co3SAT and, later, for TQBF, we

introduce a new technical tool: Arithmetization of boolean formulas. Consider the follow-
ing recursive definition of a function a that maps formulas on boolean variables {xi}ni=1 to
multinomials over Z in indeterminates {Xi}ni=1:

φ a(φ)

F 0
T 1
xi Xi

¬xi (1−Xi)
f1 ∨ f2 a(f1) + a(f2)
f1 ∧ f2 a(f1) · a(f2)

For example, if
φ(x1, x2, x3) = (x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ x2 ∨ ¬x3),

then
(a(φ))(X1, X2, X3) = (X1 + 1−X2 +X3) · (X1 +X2 + 1−X3).

Let φ be a 3CNF formula on n variables {x1, . . . , xn} with m clauses {c1, . . . , cm}. Each
clause is itself a formula cj(xi1 , xi2 , xi3) on three of the variables in {x1, . . . , xn}, and any
truth assignment (b1, . . . , bn) to the variables in φ either satisfies of falsifies cj. In the
multinomial a(φ), there is a factor a(cj) that corresponds to cj, and a(cj)(Xi1 , Xi2 , Xi3)
takes on the value 0, 1, 2, or 3 on (a(b1), . . . , a(bn)), depending upon whether 0, 1, 2, or 3 of
the literals in cj(bi1 , bi2 , bi3) are true. Moreover, a(cj) is 0 on (a(b1), . . . , a(bn)) if and only if
(b1, . . . , bn) falsifies cj. Since a(φ) is just the product of the a(cj)’s, 1 ≤ j ≤ m, the value of
a(φ)(a(b1), . . . , a(bn)) is in the interval [0, 3m], for any truth assignment (b1, . . . , bn). Using
these basic facts about arithmetization, we have

Fact 1. For any truth assignment (b1, . . . , bn),

φ(b1, . . . , bn) = F ←→ a(φ)(a(b1), . . . , a(bn)) = 0.

Fact 2.
0 ≤

∑
b1∈{T,F}

∑
b2∈{T,F}

· · ·
∑

bn∈{T,F}

(a(φ))(a(b1), . . . , a(bn)) ≤ 2n · 3m.

Fact 3.

φ 6∈ 3SAT ←→
∑

b1∈{T,F}

∑
b2∈{T,F}

· · ·
∑

bn∈{T,F}

(a(φ))(a(b1), . . . , a(bn)) = 0

1

Now choose a prime p in the interval (2n·3m, 2n+1·3m) (the existence of which is guaranteed
by Chebyshev’s Theorem, aka Bertrand’s Postulate). For the rest of this lecture, we take
a(φ) to be a multinomial in Zp[X1, . . . , Xn] instead of Z[X1, . . . , Xn]. Fact 2 guarantees that
there is no wraparound when the computation is done mod p and hence, together with Fact
3, gives us

Fact 4.

φ 6∈ 3SAT ←→
∑

b1∈{T,F}

∑
b2∈{T,F}

· · ·
∑

bn∈{T,F}

(a(φ))(a(b1), . . . , a(bn)) ≡ 0 (mod p).

We will give a general sum-check protocol that allows the prover to convince the verifier
of the truth of claims of the form∑

z1∈{0,1}

∑
z2∈{0,1}

· · ·
∑

zn∈{0,1}

h(z1, z2, . . . , zn) ≡ q (mod p),

wherem is the maximum degree of any variable in h and p is a prime that is singly exponential
in n and m. Note that, for the arithmetization that we are using here, the maximum degree
of a variable in the multinomial h and the number of clauses in the 3SAT formula are equal,
because the arithmetization of each clause is linear in each of the three relevant variables.

It will be a public-coin protocol, and hence we use Merlin (M) and Arthur (A) to refer
to the prover and verifier, respectively. The special case in which h = a(φ) for some 3CNF
formula φ and q = 0 allows Merlin to convince Arthur that φ is not in 3SAT, because the
protocol can start with Merlin’s sending Arthur a prime in the interval (2n · 3m, 2n+1 · 3m)
and Arthur’s verifying that it is indeed prime. Note that, although Arthur cannot evaluate a
multinomial expression of the form

∑
b1∈{T,F}

∑
b2∈{T,F} · · ·

∑
bn∈{T,F}(a(φ))(a(b1), . . . , a(bn)),

he can write it down, because its size is polynomial in n and m. Moreover, Arthur can
evaluate h(z1, z2, . . . , zn) for any fixed vector (z1, z2, . . . , zn) ∈ Zn

p . For zi not equal to 0 or
1, this expression does not correspond to a value of φ, even if h is of the form a(φ), but it is
still perfectly well defined as the value of an n-variable multinomial over Zp.

For any fixed (z2, . . . , zn), h(X1, z2, . . . , zn) is a univariate polynomial over Zp of degree
at most m. Let

h1(X1) =
∑

z2∈{0,1}

· · ·
∑

zn∈{0,1}

h(X1, z2, . . . , zn).

Then∑
z1∈{0,1}

∑
z2∈{0,1}

· · ·
∑

zn∈{0,1}

h(z1, z2, . . . , zn) ≡ q (mod p) ←→ h1(0) + h1(1) ≡ q (mod p).

Sum-Check Protocol:

Input: h(X1, . . . , Xn), q, and p satisfying the above conditions

Merlin’s Claim:
∑

z1∈{0,1}
∑

z2∈{0,1} · · ·
∑

zn∈{0,1} h(z1, z2, . . . , zn) ≡ q (mod p)

A: If n = 1, check that h(0) + h(1) ≡ q (mod p) and accept if and only if it is. If n > 1,
ask M for h1(X1).

2

M: Send h1.
A: Reject if h1(0) + h1(1) 6≡ q (mod p). Else, choose a ∈R Zp and recursively use the

sum-check protocol to have M prove that∑
z2∈{0,1}

· · ·
∑

zn∈{0,1}

h(a, z2, . . . , zn) ≡ h1(a) (mod p).

Clearly, if Merlin is making a correct claim, then Arthur will always accept, because
Merlin can always send the correct univariate polynomial h1. On the other hand, if Merlin
is making an incorrect claim, then Arthur will reject with probability at least (1− m

p
)n. We

prove this by induction on n. Note first, however, that (1− m
p

)n ≥ (1− mn
p

), and p > 2n · 3m.

Clearly, Arthur will always reject if n = 1 and h(0) + h(1) 6≡ q (mod p). So assume that
the rejection probability is at least (1 − m

p
)n−1 when the number of variables is n − 1, and

Merlin makes an incorrect claim. Now assume that Merlin claims incorrectly that∑
z1∈{0,1}

∑
z2∈{0,1}

· · ·
∑

zn∈{0,1}

h(z1, z2, . . . , zn) ≡ q (mod p)

and runs the protocol with Arthur. When asked to provide a univariate polynomial, Merlin
cannot send h1(X), because h1(0) + h1(1) 6≡ q (mod p). So Merlin must send some other
univariate polynomial s1(X1) of degree m with the property that s1(0)+s1(1) ≡ q (mod p).
When he and Arthur proceed to the recursive call of the sum-check protocol, Merlin will only
be making a correct claim if s1(a) ≡ h1(a) (mod p) for the a that Arthur chooses uniformly
at random from Zp. Because s1 and h1 are different degree-m, univariate polynomials over
Zp, the probability that they have the same value on a uniformly randomly chosen a is at
most m

p
(which is the probability that this random a is one of the at most m distinct roots of

the degree-m polynomial (s1 − h1)(X1)). Thus, the probability that Arthur rejects Merlin’s
incorrect claim about this n-variable h is at least 1 − m

p
(the probability that Merlin must

make an incorrect claim in the recursive call) times (1− m
p

)n−1 (the probability that Arthur

rejects an incorrect claim about an (n− 1)-variable polynomial in the recursive call), i.e., at
least (1− m

p
)n.

3

