
The Cook-Levin Theorem

This material was presented in class on January 26 and 28, 2016. Throughout, points
that were not covered in detail in class and that you are encouraged to think through and
justify are marked by “(WHY?).”

Recall that L1 is polynomial-time, many-to-one reducible to L2, denoted L1 ≤P L2, if
there is a polynomial-time computable function f such that x ∈ L1 if and only if f(x) ∈ L2.
Reductions of this form are also referred to as Karp reductions. Throughout this lecture, all
reductions are of this form, and we will refer to them simply as reductions.

The Cook-Levin Theorem tells us that, if L ∈ NP, then L ≤P SAT. We will in fact prove
that, if L ∈ NP, then L ≤P 3SAT.

Lemma 1 SAT ≤P 3SAT.

Proof. Let φ = C1 ∧ · · · ∧ Cm be a SAT instance on the boolean variables x1, . . . , xn. For
1 ≤ j ≤ m, Cj is the disjunction of literals `j,1, . . . , `j,k(j), where each `j,q is either xr or xr
for some r, 1 ≤ r ≤ n. Without loss of generality, we assume that k(j) ≤ n, for 1 ≤ j ≤ m.

We give a recursive description of a reduction f that produces a formula that is in 3SAT
if and only if φ is in SAT. In the base case of f , all clauses in φ have at most three literals;
in this case, we just output φ and halt. Otherwise, we proceed as follows.

Each clause Cj = `j,1∨ · · · ∨ `j,k(j) gives rise to either one or two clauses in a new formula
τ . If k(j) ≤ 3, then Cj is a clause in τ . Otherwise, let C ′j = `j,1 ∨ · · · ∨ `j,s ∨ yj, and
C ′′j = `j,s+1 ∨ · · · ∨ `j,k(j) ∨ yj, where s = bk(j)/2c, and the set {y1, . . . , ym} of boolean
variables is disjoint from {x1, . . . , xn}. Both C ′j and C ′′j are clauses in τ .

Now set φ equal to τ and make the next recursive call of f .
We show that, in each recursive call, τ is satisfiable if and only if φ is satisfiable. Let

A : {x1, . . . , xn} → {T, F} be an assignment of truth values to the variables of φ. Consider
extending A to an assignment A′ : {x1, . . . , xn, y1, . . . , ym} → {T, F} of truth values to the
variables of τ ; A′ is an “extension” in that it agrees with A on the variables of φ. If A
satisfies φ, then any extension A′ must satisfy C ′j or C ′′j (or both), for 1 ≤ j ≤ m. (WHY?)
Assume without loss of generality that C ′j is satisfied regardless of whether A′(yj) is T or F;
we can set the value of A′(yj) so as to guarantee that C ′′j is satisfied, This shows that τ is
satisfiable if φ is satisfiable. If A falsifies φ, then it falsifies Cj, for some j, 1 ≤ j ≤ m. Thus
all possible extensions yield assignments A′ that falsify either C ′j or C ′′j . (WHY?). This
shows that τ is unsatisfiable if φ is unsatisfiable.

Finally, note that f runs in time polynomial in n and m. (WHY?).

We will say that the size of a CNF formula is the number of ∨ and ∧ operators that it
contains. This measure of size is polynomially related to the number of bits in any reasonable
binary encoding of the formula.

Proposition 2 The formula (x1 ∨ y1) ∧ (x1 ∨ y1) ∧ · · · ∧ (xn ∨ yn) ∧ (xn ∨ yn) is a CNF
formula of size 4n− 1 = O(n) that is true if and only if xi = yi, for 1 ≤ i ≤ n.

Lemma 3 For any function F : {0, 1}` → {0, 1}, there is an `-variable CNF formula φF of
size at most ` · 2` such that φF (u) = F (u), for all u ∈ {0, 1}`.

1

Proof. For each of the 2` assignments v ∈ {0, 1}`, we may include in φF a clause Cv

that evaluates to 0 on v and to 1 on all u 6= v. For example, if v = (1, 1, 0, 1), then
Cv(w1, w2, w3, w4) = w1 ∨ w2 ∨ w3 ∨ w4. In general, if v = (ε1, ε2, . . . , ε`), then

Cv(w1, w2, . . . , wn) =
∨̀
i=1

zi,

where zi = wi if εi = 0, and zi = wi if εi = 1. Note that all of the literals in this clause will
be 0 if and only if the input is identical to v.

Now let
φF =

∧
v∈F−1(0)

Cv.

That is, the clause Cv is included in the conjunction if and only if F (v) = 0. The size of
φF is at most ` · 2`, because there are at most 2` vectors v such that F (v) = 0, and each
corresponding Cv has size `− 1.

To see that φF (u) = F (u), note that, if F (u) = 0, then Cu(u) = 0, and thus the
conjunction φF (u) = 0, because it contains the clause Cu(u). On the other hand, if F (u) = 1,
then all clauses Cv(u) in φF (u) evaluate to 1, because the clause is included only if F (v) = 0.

Note that, for a fixed constant `, F corresponds to a constant-sized φF .
We now proceed to the proof of the Cook-Levin Theorem. Let L be a set in NP, and let

M be a (deterministic) polynomial-time TM and p a polynomial such that

x ∈ L←→ ∃u ∈ {0, 1}p(|x|) s.t. M(x, u) = 1.

Assume without loss of generality that M has one input tape and one work/output tape.
(Claim 1.6 in your textbook implies that this assumption is valid.) Assume further that M
is oblivious. By this, we mean that M ’s tape-head movements do not depend on the contents
of its input tape. Thus, the positions of M ’s two tape heads at time i depend on i and on
|y| (the length of its input) but not on which string of length |y| is on the input tape. (The
fact that every polynomial-time function can be computed obliviously in polynomial time is
something that you will work out in HW1.)

For any input length m, we can thus define inputposm(i), which is the location of
M ’s input-tape head at time i, and prevm(i), which is the largest j < i such that M ’s
work/output-tape head was at the same location at time j as it is at time i. Note that, for
each location in the work/output tape, there will be a smallest i such that the work/output-
tape head points to that location at time i. For that i, we set prevm(i) = 0 and note that
the symbol in that location at time 0 is �.

Both inputposm() and prevm() are computable in time polynomial in m. (WHY?).
Let Q be the state set of M and Γ = {�,B, 0, 1} be the tape alphabet of M . (Claim 1.5

in your textbook states that this four-symbol alphabet suffices.) A snapshot of M ’s execution
on input y of length m at time i is a triple zi = 〈a, b, q〉 ∈ Γ× Γ×Q, where
a is the symbol read from M ’s input tape at time i,
b is the symbol read from M ’s work/output tape at time i, and

2

q is the state that M is in at time i.
Note that the binary encoding of zi is of constant length c. (WHY?)
There is a function G such that

zi = G(zi−1, zprevm(i), yinputposm(i)).

G is determined by the transition function δ of the Turing Machine M . To compute the state
in zi, one needs merely to apply δ to zi−1. The value a in zi is, by definition, yinputposm(i). To
compute the value b in zi, one needs precisely the information encoded by zprevm(i), because
it is the state, the input-tape symbol, and the work/output-tape symbol at time j to which
M applies the function δ to detemine which symbol b to write on the work/output tape,
and it is this symbol that will be read at time i. Note that G : {0, 1}2c+1 → {0, 1}c is
equivalent to a binary function F : {0, 1}3c+1 → {0, 1}, to which we can apply Lemma 3:
F (z1, z2, z3, a) = 1 if and only if z1 = G(z2, z3, a).

Now we can put all of this together for our reduction from x to φx, such that x ∈ L
if and only if φx is satisfiable. Recall that x ∈ {0, 1}n and x ∈ L if and only if there is a
u ∈ {0, 1}p(|x|) such that M(y) = 1, where y = xu. So |y| = m = n + p(n). Let T (n) be the
running time of M on inputs of length n + p(n). (Note that we need M to be oblivious for
T (n) to be well defined.)

Consider the sequence of bits

y1, . . . , yn, yn+1, . . . , yn+p(n), t1, . . . , tcT (n),

where xu = y1, . . . , yn+p(n), zi = t(i−1)c+1, . . . , tic for 1 ≤ i ≤ T (n), and z1, . . . , zT (n) is the
sequence of snapshots of M ’s execution on y. Then M(y) = 1 if and only if this sequence of
bits satisfies
(1) The x = y1, y2, . . . , yn,
(2) z1 = 〈B,�, qstart〉,
(3) For all i ∈ {2, . . . , T (n)}, zi = G(zi−1, zprevm(i), yinputposm(i)), and
(4) zT (n) is a snapshot with q = qHALT and b = 1.

The output φx of our reduction is the formula on boolean variables y1, . . . , yn+p(n), t1, . . . ,
tcT (n) that is true if and only if the variables satisfy (1), (2), (3), and (4). (Note that
yn+1, . . . , yn+T (n), i.e., the variables that encode the witness u, are the only ones that must
be chosen in order satisfy the formula; the others are determined by x, u, and M .) Moreover,
(1) gives rise to a formula of size O(n), by Proposition 2; (2) and (4) are formulae of size
O(1); and (3) is the AND of T (n) − 1 formulae of size O(1) by Lemma 3. Thus φx can be
computed in polynomial time, given x and M .

3

