
Pairwise-Independent Hash-Function Families and the
Goldwasser-Sipser Lower-Bound Protocol

This material was presented in class on March 29, 2016.
Let Hn,k be a set of functions that map {0, 1}n to {0, 1}k. We say that Hn,k is a pairwise-

independent hash-function family if, for all x 6= x′ in {0, 1}n and all y and y′ in {0, 1}k,

Probh∈RHn,k
(h(x) = y and h(x′) = y′) =

1

22k
.

Equivalently, for any pair of distinct elements x and x′ in {0, 1}n, if an element h is cho-
sen uniformly at random from Hn,k, the induced random variable (h(x), h(x′)) is uniformly
distributed on {0, 1}k × {0, 1}k.

Obviously, the set of all functions from {0, 1}n to {0, 1}k is a pairwise-independent hash-
function family. In order to be useful, however, elements of Hn,k should have polynomial-
length representations (so that one can choose one uniformly at random by flipping a poly-
nomial number of coins) and should be computable in polynomial time. We now specify one
such family. There are others with these two desirable properties.

Recall that elements of the finite field GF(2n) can be represented by n-bit strings. It is
easy to see that the set of all ha,b, where a and b are both elements of GF(2n) and ha,b(z) =
az + b, is a pairwise-independent hash-function family Hn,n. First, note that, as a and b
range over all of GF(2n), the function ha,b ranges over all affine functions that map GF(2n)
to GF(2n), of which there are 22n. Choosing a and b independently and uniformly at random
is tantamount to choosing such an affine function uniformly at random. On the other hand,
each quadruple x, x′, y, y′ of elements of GF(2n) such that x 6= x′ uniquely determines an
affine function h such that h(x) = y and h(x′) = y′. (Just let h(z) = (y′−y

x′−x)z+(y− (y′−y
x′−x)x).)

For a given x, x′, y, y′ such that x 6= x′, the probability that an ha,b chosen uniformly at
random is equal to this h is exactly 2−2n, which is what we need for Hn,n to be a pairwise-
independent hash-function family.

If k > n, we can get Hn,k by using Hk,k and padding the input strings with n− k zeroes.
If k < n, we can get Hn,k by using Hn,n and chopping off the last n− k output bits.

We turn now to the Goldwasser-Sipser lower-bound protocol, which uses a pairwise-
independent hash-function family. Suppose that S is a subset of {0, 1}n in which membership
can be certified (in the NP sense). Both Arthur and Merlin know an integer K. Merlin’s
goal is to convince Arthur that |S| ≥ K. We give a protocol with the property that, if
|S| ≥ K, i.e., if Merlin is making a correct claim, then Arthur accepts with high probability,
and, if |S| ≤ K

2
, i.e., if Merlin is making a claim that is not just incorrect but far from

correct, then Arthur rejects with high probability. There is no requirement on what Arthur
will do if K

2
< |S| < K. Let Hn,k be a pairwise-independent hash-function family, where

2k−2 < K ≤ 2k−1.

1

LBP (S,K)
A: Choose h ∈R Hn,k and y ∈R {0, 1}k.
A → M: (h, y)
M: Find x ∈ S such that h(x) = y.
M → A: (x, c), where c is a certificate of x ∈ S
A: Accept if and only if h(x) = y and c is valid.

Let p∗ = K
2k

and p = |S|
2k

. Assume that |S| ≤ 2k−1. Note that K ≤ 2k−1 and that Merlin
is trying to convince Arthur that |S| ≥ K; so, if |S| > 2k−1, Merlin can just choose a subset
T of S such that |T | ≤ 2k−1 and convince Arthur that |T | ≥ K, which implies that |S| ≥ K;
so we lose nothing by assuming that |S| ≤ 2k−1. We claim that

p ≥ Probh,y (∃x ∈ S : h(x) = y)) ≥ 3p

4
. (1)

To see that the upper bound of p in (1) is correct, observe that |h(S)| ≤ |S|, for any
function h. The probability that y chosen uniformly at random from {0, 1}k is in h(S) is

just |h(S)|
2k
≤ |S|

2k
= p.

We can actually prove the lower bound of 3p
4

in (1) for any y, not just a random y. Let x
be an element of S and Ex be the event that h(x) = y for an h chosen uniformly at random
from Hn,k. Note that the definition of pairwise-independent hash-function families give us
Prob[Ex] = 2−k. In (1), we have

Probh (∃x ∈ S : h(x) = y) = Probh

(∨
x∈S

Ex

)
. (2)

By the inclusion-exclusion principle (2) is at least(∑
x∈S

Prob(Ex)

)
− 1

2

(∑
x 6=x′∈S

Prob(Ex ∧ Ex′)

)
, (3)

and the definition of pairwise-independent hash-function families tells us that Prob(Ex ∧
Ex′) = 2−2k. So (3) is at least

|S|
2k
− |S|(|S| − 1)

2 · 22k

>
|S|
2k
− |S|

2

22k+1

=
|S|
2k

(
1− |S|

2k+1

)
≥ p

(
1− 2k−1

2k+1

)
=

3p

4
.

We can now state precisely what LBP does in the two cases we’re interested in: If |S| ≥ K,
then the probability that Arthur accepts in a single execution of LBP is at least

3p

4
=

3

4
· |S|

2k
≥ 3

4
· K

2k
=

3

4
p∗.

2

On the other hand, if |S| ≤ K
2

, then the probability that Arthur accepts in a single execution
of LBP is at most

p =
|S|
2k
≤ 1

2
· K

2k
=

1

2
p∗.

To achieve the high-probability result that we want, we just amplify this gap of 1
4
p∗ in the

acceptance probabilities of the two cases by running M independent trials of LBP. If Merlin
is making a true claim, the expected number of accepts is at least 3M

4
p∗, and, if he is making

a far from true claim, the expected number is at most M
2
p∗; moreover, M can be chosen so

that the probability of fewer than M
2
p∗ accepts in the first case or more than 3M

4
p∗ in the

second is negligible.

3

