
An Interactive Proof System for TQBF

This material was presented in class on April 5 and 7, 2016.
We wish to revise the interactive proof system for coSAT that was given in class on

March 31, 2016, so that it works for TQBF. The existence of such a proof system implies
that PSPACE is contained in IP.

We follow the argument on pages 161 and 162 of your textbook. That argument is clear
until it gets to the last displayed formula on page 161. Because the displayed expression
should be the fully arithmetized and linearized version of the TQBF instance ψ, it should
be

ΠX1L1ΣX2L1L2 · · ·ΣXnL1L2 · · ·LnPφ(X1, X2, . . . .Xn). (1)

Here and throughout this lecture, the products and sums are computed over Xi ∈ {0, 1},
where 0 and 1 are elements of the field Zp, and p is a suitably large prime. (The size of p
will be addressed below.) Assume without loss of generality that φ is a 3CNF formula on n
boolean variables with m clauses.

The proof system for TQBF needs i+1 segments of interaction, say (i.1) through (i.i+1),
between Arthur and Merlin in order to handle OXi

L1L2 · · ·Li, for 1 ≤ i ≤ n, where O = Π
if i is odd and O = Σ is i is even; each segment requires O(1) rounds. (Think of a segment
as a subprotocol.) So the entire protocol requires O(n2) rounds of interaction. The segment
(i.1) handles the operator ΠXi

, if i is odd, and it handles the operator ΣXi
, if i is even.

Subsequent segments (i.2) through (i.i+ 1) handle the operators L1 through Li.
Merlin’s original claim is that the formula ψ is true, which is equivalent to

ΠX1L1ΣX2L1L2 · · ·ΣXnL1L2 · · ·LnPφ(X1, X2, . . . .Xn) ≡ C mod p, (1.1)

where C 6= 0.
We now specify the first few segments of the proof system in detail:

Segment 1.1:
Note that Merlin’s claim (congruence (1.1) above) is equivalent to the claim that
ΠX1(h

1
1(X1)) ≡ C mod p, where h11 is the linear, univariate polynomial in X1 that results

from evaluating all of the operators in congruence (1.1) except ΠX1 .

Arthur challenges Merlin to send him h11(X1). Merlin sends him a linear, univariate polyno-
mial s11(X1). As in the sum-check protocol used in the proof system for coSAT, s11 will be
equal to h11 if and only if Merlin is making a correct claim.

Arthur checks that s11(0) · s11(1) ≡ C mod p; he rejects and halts the protocol if this check
fails. Otherwise, he chooses a11 uniformly at random from Zp and sends it to Merlin.

Segment 1.2:
Merlin’s claim is that[

L1ΣX2L1L2 · · ·ΣXnL1L2 · · ·LnPφ(X2, . . . .Xn)
]
(a11) ≡ s11(a

1
1) mod p. (1.2)
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This is equivalent to the claim that
[
L1(h

2
1)
]
(a11) ≡ s11(a

1
1) mod p, where h21(X1) is the

quadratic,1 univariate polynomial in X1 that results from evaluating all of the operators
in congruence (1.2) except the leftmost L1.

Arthur challenges Merlin to send him h21(X1). Merlin sends him a quadratic, univariate
polynomial s21(X1). It will be equal to h21 if and only if Merlin is making a correct claim.

Arthur checks that (1−a11) ·s21(0)+a11 ·s21(1) ≡ s11(a
1
1) mod p; he rejects and halts the protocol

if this check fails. Otherwise, he chooses a21 uniformly at random from Zp and sends it to
Merlin.

Segment 2.1:
Merlin’s claim is that[

ΣX2L1L2 · · ·ΣXnL1L2 · · ·LnPφ(X1, X2, . . . .Xn)
]
(a21) ≡ s21(a

2
1) mod p. (2.1)

This is equivalent to the claim that ΣX2(h
1
2(X2)) ≡ s21(a

2
1) mod p, where h12 is the linear,

univariate polynomial in X2 that results from evaluating all of the operators in congruence
(2.1) except Σ2.

Arthur challenges Merlin to send him h12. Merlin sends him a linear, univariate polynomial
s12 in X2. It will be equal to h12 if and only if Merlin is making a correct claim.

Arthur checks that s12(0) + s12(1) ≡ s21(a
2
1) mod p; he rejects and halts the protocol if this

check fails. Otherwise, he chooses a12 uniformly at random from Zp and sends it to Merlin.

Segment 2.2:
Merlin’s claim is that[

L1L2 · · ·ΣXnL1L2 · · ·LnPφ(X1, . . . .Xn)
]
(a21, a

1
2) ≡ s12(a

1
2) mod p. (2.2)

This is equivalent to the claim that
[
L1(h

3
1)
]
(a21) ≡ s12(a

1
2) mod p, where h31 is the quadratic,

univariate polynomial in X1 that results from evaluating all of the operators in congruence
(2.2) except the leftmost L1.

Arthur challenges Merlin to send him h31. Merlin sends him s31. It will be equal to h31 if and
only if Merlin is making a correct claim.

Arthur checks that (1−a21) ·s31(0)+a21 ·s31(1) ≡ s12(a
1
2) mod p; he rejects and halts the protocol

if this check fails. Otherwise, he chooses a31 uniformly at random from Zp and sends it to
Merlin.

Segment 2.3:
Merlin’s claim is that[

L2 · · ·ΣXnL1L2 · · ·LnPφ(X1, . . . .Xn)
]
(a31, a

1
2) ≡ s22(a

3
1) mod p. (2.3)

This is equivalent to the claim that
[
L2(h

2
2)
]
(a12) ≡ s22(a

3
1) mod p, where h22 is the quadratic,

univariate polynomial in X2 that results from evaluating all of the operators in congruence
(2.3) except the leftmost L2.

1The question of why (and, in fact, whether) h2
1 is quadratic is addressed below.
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Arthur challenges Merlin to send him h22. Merlin sends him s22. It will be equal to h22 if and
only if Merlin is making a correct claim.

Arthur checks that (1−a12) ·s22(0)+a12 ·s22(1) ≡ s22(a
3
1) mod p; he rejects and halts the protocol

if this check fails. Otherwise, he chooses a22 uniformly at random from Zp and sends it to
Merlin.

Segment 3.1:
Merlin’s claim is that[

ΠX3L1L2L3 · · ·ΣXnL1L2 · · ·LnPφ(X1 . . . .Xn)
]
(a31, a

2
2) ≡ s32(a

2
2) mod p. (3.1)

. . . and so forth.

In general, we proceed in a similar fashion in segments (i.1) through (i.i + 1). Segment
(i.1) handles operator OXi

, where O = Π if i is odd and O = Σ if i is even. In segment
(i.1), Merlin is challenged to supply h1i , which is a univariate polynomial in Xi. If the s1i
that he supplies passes the required product or sum check, then Arthur chooses a1i uniformly
at random and sends it to Merlin. In segment (i.j), for 2 ≤ j ≤ i + 1, Merlin is asked to
supply hi−j+3

j−1 , which is a univariate polynomial in Xj−1. If the polynomial si−j+3
j−1 that he

supplies passes the required linearity test, then Arthur chooses ai−j+3
j−1 uniformly at random

and sends it to Arthur. Note that segment (i.1) is the first segment in which Merlin is asked
to supply a polynomial in Xi (specifically h1i ) and that segment (i.i+ 1) is the second time
that Merlin is asked to supply a polynomial in Xi (specifically, h2i , which is hi−j+3

j−1 , when j
is set to i + 1). In general, the subscript i on an h, s, or a indicates the variable Xi, and
the superscript k indicates that this is the kth time that an h, s, or a was chosen for the
variable Xi. Whenever Merlin or Arthur has to plug in an aki for the variable Xi, he plugs
in the most recently chosen one (i.e., he plugs in aki for the highest value of k that has been
used thus far on this i).

Clearly, if Merlin is making a correct claim that the original TQBF instance ψ is true,
he can always convince Arthur to accept simply by answering all questions truthfully.

We now argue that, if Merlin’s original claim is false, he can convince Arthur to accept
only with exponentially small probability.

Note that we arithmetize φ using the arithmetization of Section 8.3.2. So each clause of
φ, which is a disjunction of three literals, is mapped to a factor of Pφ that is of degree at
most three in each variable. The entire multivariate polynomial Pφ is the product of m such
factors and thus of degree at most 3m in each variable. It is not difficult to see that this
implies that the univariate polynomial hji that is checked in each segment is also of degree
at most 3m.

If the proof system continues long enough, there will be few enough operators in the
expression about which Merlin is making a claim to enable Arthur simply to check the
correctness of the claim directly in polynomial time. Arthur will reject at this point if the
claim that Merlin is making is false. Therefore, if Merlin starts with a false claim about
ψ and continues making false claims in every segment, Arthur will eventually reject. The
only way that Merlin can get Arthur ultimately to accept is by switching at some point from
making a false claim in one segment to making a true one in the next: If Merlin ever switches
to a true claim, he can continue to do so until the end of the protocol.
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How might Merlin get into a situation in which he can start making true claims? He
must, when asked by Arthur to send a univariate polynomial hji , send a polynomial sji 6= hji ,
because sji must pass a product, sum, or linearity test that hji would not pass. If sji agrees
with hji on the next a ∈ Zp chosen by Arthur, however, then Merlin is left with a true claim.
Both hji and sji are univariate polynomials of degree at most 3m; therefore, they can agree
on at most 3m points. The value a is chosen uniformly at random by Arthur from Zp, which
is of size exponential in m and n, after Merlin chooses sji . Thus Merlin has an exponentially
small chance of “lucking into” a correct claim in each segment. There are O(n2) segments,
which implies that Merlin’s total probability of getting Arthur to accept an incorrect claim
that the original formula ψ is true is exponentially small.

In the case of a segment i.j in which the operator being handled is Lj−1, why might the
polynomial hji be quadratic? Reading the sequence of operators in the congruence (i.j) from
right to left, consider what has happened as all operators except the leftmost Lj−1 have been
evaluated. After the previous Lj−1 was evaluated (at which point the partial result was a
multivariate polynomial that was linear in Xj−1), an arithmetic operator was applied. If
that was a product operator, then it produced a multivariate polynomial that is quadratic in
Xj−1. This degree doubling does not occur if the intervening arithmetic operator is a sum.
However, it is more convenient to have a uniform specification for the protocol segments,
and we can do so if we make the worst-case assumption that hji is quadratic. A linear
polynomial is in fact just a quadratic polynomial with leading coefficient 0, and applying the
linearization operator to a polynomial that is already linear just leaves it unchanged.

It remains to explain why it suffices to use a prime p that is singly exponential in n and
m (i.e., a p that can be represented using a number of bits that is polynomial in n and m).
If we use the arithmetization from the interactive proof system for #SAT in Section 8.3.2
(not the arithmetization that we used in our interactive proof system for coSAT), then (1),
evaluated over Z, is equal to 0 if ψ is false and 1 if ψ is true. Therefore, wraparound is not
an issue, and (1) has the correct value modulo p for any p. Because the error probability is

0 in the case that Merlin is making a correct claim and poly(n,m)
p

in the case that Merlin is
lying, we can use any p that is singly exponential in n and m.
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