
Boolean Circuits and the Karp-Lipton Theorem

This material was presented in class on February 23, 2016.
Before presenting the proof of the Karp-Lipton Theorem we covered Theorem 2.18 and

Definitions 6.1, 6.2, and 6.5. These items are all presented clearly in the textbook and won’t
be repeated here.

Karp-Lipton Theorem: If NP ⊆ P/poly, then PH = ΣP
2 .

Proof: It suffices to show that, if NP ⊆ P/poly, then Π2SAT ∈ ΣP
2 .

Recall that Π2SAT consists of all true QBFs of the form

∀u ∈ {0, 1}n ∃v ∈ {0, 1}n φ(u, v) = 1, (1)

where φ is a quantifier-free boolean formula on 2n variables with m clauses.
Note that (1) is of the form ∀u ∈ {0, 1}n [SAT]; that is, for any fixed φ and u, the part of

(1) that begins with ∃ is just ∃v ∈ {0, 1}nφu(v) = 1, where φu(·) is the formula φ(·, ·) with
the first n boolean variables instantiated as in u and the last n boolean variables left free.
This is, of course, a SAT instance.

Our hypothesis is that SAT∈ P/poly. So there is a polynomial p and a p(n,m)-sized
circuit family {Cn,m} such that

∀φ, u Cn,m(φ, u) = 1 ←→ ∃v ∈ {0, 1}nφu(v) = 1.

Here, “Cn,m(φ, u)” means “the circuit Cn,m evaluated on the SAT instance determined by φ
and u.”

Recall that there is a polynomial-sized circuit family {C ′
n,m} that reduces the search

problem for SAT to the decision problem for SAT. Given an oracle that decides SAT, a
circuit C ′

n,m can produce an assignment that satisfies a formula, provided such an assignment
exists. Whenever C ′

n,m needs to make an oracle call on a k-variable, `-clause formula and
feed the answer to a gate g, it can instead feed that formula to Ck,` and feed the output to g.
There will be a polynomial number q(n) of such calls, the sizes (k1, `1), . . ., (kq(n), `q(n)) are
all polynomial in (n,m), and the circuits Cki,`i are of size polynomial in ki and `i. Therefore,
under the hypothesis that SAT∈ P/poly, we can “compose” these circuit families {Cn,m}
and {C ′

n,m} to get a polynomial-sized circuit family {Dn,m} that, given a SAT instance as
input, produces a satisfying assignment if one exists. (We need the hypothesis to assert
the existence of {Cn,m} but not to assert the existence of {C ′

n,m}.) Let w(n,m) be the
(polynomial) number of bits needed to encode Dn,m. Denote by Dn,m(φ, u) the output of
Dn,m on the formula φu determined by φ and u.

Now consider the following Σp
2 expression:

∃Dn,m ∈ {0, 1}w(n,m) ∀u ∈ {0, 1}n φu(Dn,m(φ, u)) = 1. (2)

We have just argued that, if (1) is true and NP ⊆ P/poly, then (2) is true. On the other
hand, if (1) is false, then (2) is also false, regardless of whether NP ⊆ P/poly. Thus, under
the assumption that NP ⊆ P/poly, the Π2SAT formula (1) is equivalent to the Σp

2 expression
(2).
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