
MIP = NEXP and the Nonapproximability of CLIQUE

This is the proof that was presented in class on April 7, 2016. Throughout, points that
you are encouraged to think through and justify in detail are marked by “(WHY?).”

Recall that “multi-prover interactive proof systems” recognize the same set of languages
as “oracle proof systems.” More precisely, L ∈ MIP if and only if there is a probabilistic
polynomial-time oracle Turing Machine M such that:

x ∈ L⇒ ∃O s.t. MO(x) = 1 with probability 1, and

x 6∈ L⇒ ∀O MO(x) = 1 with probability less than
1

4
.

Next, recall that the clique number of a graph G is the largest integer k such that G
contains a complete subgraph on k vertices. Computing the clique number is, of course,
an NP-hard problem, because the set {(G, k) such that G contains a clique of size k} is
NP-complete. A function f is said to c-approximate the function g if, for all x, g(x)/c ≤
f(x) ≤ c · g(x).

Theorem: If the clique number function can be 2-approximated in polynomial time, then
EXP = NEXP.

Let L be an arbitrary language in NEXP. Because NEXP = MIP, there is a probabilistic
polynomial-time machine M that serves as the “verifier” in an oracle proof system as above.
We use the following notion of a proof-system transcript to construct a graph GM,x for each
x ∈ {0, 1}∗ that may or may not be in L. Let r be a random coin-toss sequence that M
uses on input x; because this is an oracle (i.e., non-adaptive) proof system, x and r uniquely
determine the sequence (q1, a1, . . . , qt, at) of M ’s oracle queries and the answers to these
queries. (WHY?) Similarly, M ’s output b ∈ {ACCEPT,REJECT} is uniquely determined
by x, r, and (q1, a1, . . . , qt, at). A transcript of M ’s execution on input x is a sequence
of the form (r, q1, a1, . . . , qt, at, b). We say that (r, q1, a1, . . . , qt, at, b) is a valid transcript
if x and r determine the queries, answers, and output (q1, a1, . . . , qt, at, b). Note that, for
x ∈ {0, 1}n, there is an upper bound m = poly(n) on the length of r, as well as an upper
bound N = poly(n) on the total length of a transcript.

Consider the following deterministic exponential-time reduction from the decision prob-
lem “Is x in L?” to the optimization problem “what is the clique number of GM,x?” The
vertices of GM,x are the 2N = 2poly(n) possible transcripts of M ’s execution on input x.
Let S1 = (r1, q11, a

1
1, . . . , q

1
t , a

1
t , b

1) and S2 = (r2, q21, a
2
1, . . . , q

2
t , a

2
t , b

2). The edge {S1, S2} is
in E(GM,x) if and only if both are valid transcripts, b1 = b2 = ACCEPT, and the two
transcripts are consistent in that a1i = a2j whenever q1i = q2j .

If x ∈ L, the fact that there is an O such that MO(x) = 1 with probability 1 implies that
the clique number of GM,x is 2m. (WHY?) If x 6∈ L, the fact that there is no O such that
MO(x) = 1 with probability at least 1/4 implies that the clique number of GM,x is less than
2m−2. (WHY?)

1



Thus, if there were a deterministic, polynomial-time algorithm that 2-approximated
the clique-number function, we would have NEXP = EXP; the following deterministic,
exponential-time algorithm would decide membership in L, where L is an arbitrary language
in NEXP. To determine whether x ∈ L, first construction GM,x; this can be done in deter-
ministic exponential time. (WHY?) If the clique number of GM,x is less than 2m−1, output
“no”; if the clique number of GM,x is at least 2m−1, output “yes.”

2


